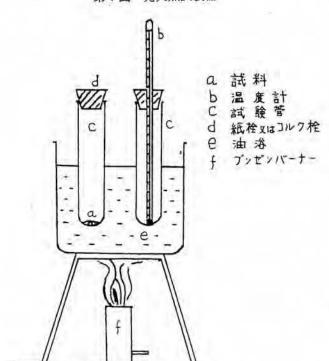
亜塩素酸ナトリウムと有機酸の混合危険

金 坂 武 雄*

1. はしがき

亜塩素酸ナトリウムは近年、漂白剤、殺菌剤(商品名シルプライト、ネオシロックスなど)としてすぐれた作用を認識され、その利用が高まりつつある。しかしながら油脂、アルニールなどの有機物、あるいはマグネシウム、アルミニウムなどの還元性物質と混合すると僅かの刺戟でも発火し、爆発する危険があり、強い鉱酸と混触すると直ちに分解するなどの性状を有しているが、最近、蓚酸のような有機酸との混合によって発火した例が数件あるので、亜塩素酸ナトリウムと蓚酸、その他の有機酸との混合による危険性を調べた。

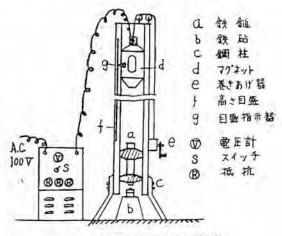

2. 実験方法

1. 亜塩素酸ナトリウムと有機酸の混合反応

試験管に亜塩素酸ナトリウム0.5g, 有機酸0.5gを 採取し、よく混和し、反応により生成した二酸化塩素 の量を北川式二酸化塩素検知管で、10秒後と2分後の 2回について測定し、その分解状況を観察した。

発火点(分解点)の測定 第1図 発火点試験器

● 第二研究室



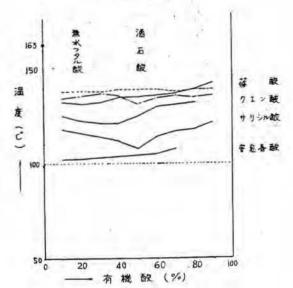
発火点(分解点)の測定は第1図のような方法で行い、径17mm、長さ165mm、肉厚0.5mm、ガラス製試験管に亜塩素酸ナトリウムと有機酸の各種濃度の混合試料0.25g~0.5gを採取し、コルク栓を施した後、30mmほどを油浴に浸し、温度計を同様な空の試験管にさし込み、水銀球を試料とほぼ同位置にあるようにして毎分5°Cの速度で加熱していき、試料が分解もしくは発火するときの温度を求めた。

3. 落槌感度試験

衝撃感度の測定には第2図のような落槌試験機を使用した.この試験機の主要部分は落槌、かなしき、および鋼柱である.実験法は、まず、デンケータでよく乾燥した混合試料(混合割合50%)を正確に 0.5g秤量し、これを10等分して、その各々を直径12mmの円形錫箔で特に圧さくすることなく被包して円型 板とし、これを落槌試験機の鉄製砧上におき、その上に高径12.7mmの鋼柱をのせ、5㎏の重量の鉄製槌を種々の高さから落し同一落高にて10回の試験中一回も爆発を認めない最高落高を不燥点とし、10回とも爆発を認めたときの最低落高を完燥点として衝撃感度を純品と比較した。

第2図 落槌試験機

3. 実験結果および考察


1. 亜塩素酸ナトリウムに各種有機酸を添加した場合 の見かけ上の変化および二酸化塩素発生量は第1表 のとおりである。蓚酸、クエン酸、酒石酸の混合試 料はそれぞれ300ppm 以上となっており、その中で も特に蓚酸、クエン酸は反応が強烈であった。その

亜塩素酸ナトリウム	知 人 1 太 机 众 の 川 自	二酸化塩素発生量		
に添加した有機酸	混合した場合の外見	10 秒 後	2 分 後	
蓚 (CO₂H)₂+2H₂O	淡黄色に変化し刺戟性のガスを発生.	300 P P m 以 上	300 P P m 以 上	
グ エ グ 酸 HO ₂ C (HO) C (CH ₂ CO ₂ H) ₂ +H ₂ O	M. The state of th	"	"	
酒 石 酸 (CHOHCO ₂ H) ₂	н	"	,	
無 水 ファタ ル 酸 C ₆ H ₄ (CO ₂ H) ₂	見かけ上の変化はない。	10 P P m	40 P P m	
安 C ₆ H ₅ CO₂H 香 酸	"	2 P P m	= ""	
ステアリン酸 CH ₅ (CH ₂) ₁₆ CO ₂ H	見かけ上の変化はないが刺戟性のガスを発 生-	240 P P m	280 P P m	
サリシル酸 HOC ₆ H ₄ CO ₂ H	見かけ上の変化はないが少量の水を加える と反応が急激となり、黄色のガスを発生す る.	痕	3 P P m	

理由としては、物質自体に結晶水を持っているので 亜塩素酸ナトリウムと接触すると結晶が溶解し、酸 性の溶液として作用するためと考えられる.

亜塩素酸ナトリウムに各種濃度の有機酸を添加した場合の発火点もしくは分解点の変化は第3図に示すとおりである。

第3図 亜塩素酸ナトリウムと各種濃度 の有機酸の発火点および分解点 ---0.25g

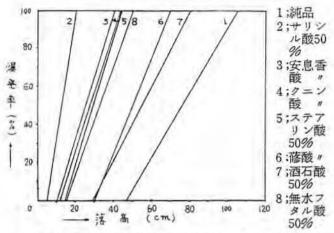
分解点163°Cの亜塩素酸ナトリウムは有機酸の添加により全面的に発火点が下がり、特にサリシル酸

50%添加したものは108°Cまで低下するのが認められた。

また、このものは多少の湿分があるときは攪き混ぜているだけで発火、爆発を起す、勿論常温においてである。最も低いのは安息香酸で102°C であった、全般的に亜塩素酸ナトリウムが20%以下に減少すると発火しにくくなり、10%以下になるとほとんど発火せず分解するのみで発生する白煙は極めて少くなく、あるいは認め難い状態であった。

爆発音の大きいのは無水フタル酸で次いでサリシル酸で、最も小さいのは蓚酸であった。何れも酸性の有機酸の添加により混合試料が酸性となり、そのために亜塩素酸ナトリウムが発熱分解して不安定な 亜塩素酸を遊離、亜塩素酸がさらに次式のように分解して

4 HCIO₂→ 2 CIO₂+HCIO₃+HCI+H₂O


二酸化塩素を発生する.二酸化塩素は濃度が高く なると分解爆発する危険がある.

発火点は130°Cくらいで、さらに低濃度、低温度でも爆発することがあるといわれている。

3. 亜塩素酸ナトリウムに各種有機酸50%混入したものの落槌試験機による衝撃感度は第4回に示すとおりで純品の不爆点は50cm, 完爆点は110cmで感度曲線の勾配も非常になめらかであるのに対し, 有機酸50%混入させたものの不爆点, 完爆点は第2表のと

おりで、その勾配も急となりサリシル酸のごときは 垂直に近くなり、衝撃による爆発音も大きく、分解 状況もほとんど完全であった。

第4図 50% 有機酸と亜塩素酸ナトリウム (純品) の落槌感度曲線の比較

また、概して発火点の低いものは落槌感度も鋭敏 となっている。この実験は24時間以上試料をデシケ ータ中に保管後、落槌試験を行ったもので、空気中 に放置したものは空気中の水分を吸収するため第2 表の実験値よりは、さらに鋭敏なる数値を示めし た。

第2表

品品		名	_	落	_	高 /	不爆点	完 爆 点
100	%亜	塩素	酸力	- 1	9 5	74	50cm	110cm
509	%酒		4	1		酸	25 #	75 "
#	蓚					酸	25 "	70 "
"	ス	テ	7	y	V	酸	15 "	50 #
"	無	水	7	4	12	酸	15 "	55 "
"	7	(2	=	2	1	酸	10 "	40 "
"	安	E	B	酒	-	酸	10 "	40 "
#	+	ŋ	3	,	14	酸	5 #	20 "

なお、5 kgの落槌を使用した時のピクリン酸の不爆点は13cmであった。

4. むすび

亜塩素酸ナトリウムで漂白など行う場合は活性剤として蓚酸その他の有機酸を使用することが多いが、この場合は稀薄溶液で処理されるので危険は少ない、しかし、実験の結果からも、わかるように純品どうしが混り合う場合は非常に危険であり、取扱上、このような事態の発生も考えられるので使用の際は充分な注意、が必要である。