緩降機に関する研究 (第1報)

Study on Descending Life Line(Series1)

国 本 由 人* 小 林 秀 俊* 永 田 清*

A descending life line is established as an escaping equipment on the Fire Service Law.

We have been studying and carrying out experiments on the performances of a descending life line when we use it as a rescue equipment.

This is the first report in series about the outline of descendiny life line and the results of the experiment.

1. はじめに

緩降機は避難器具として建物に設置されている ばかりでなく、その特性を利用して高層階からの 救助、隊員の進入、脱出等救助器具としても活用 されている。緩降機は消防法による検定品であり、 緩降機の技術上の規格を定める省令により技術基 準が定められている。しかし、救助器具として用 いた場合は使用回数、使用条件が消防設備として 設置してあるものと比較し苛酷な取扱いをしてい る。したがって安全管理上救助器具として用いた 場合に、緩降機の性能がどのように変化するか把 握しておく必要がある。このため、各種調査、実 験等により緩降機の研究を行っているところであ り、今回は第1報として緩降機の構造概要及び実 験の一部について報告する。

2. 緩降機の構造

緩降機は、調速器、ローブ、ベルト等から構成 され、降下者の自重によって降下し、調速器で降 下速度を調整して緩やかにおろすものである。こ こで、主要部分である調速器及びローブの構造に ついて概要を述べる。

(1) 調速器の構造

調速器は,遠心力ブレーキ式及び油制御式 等がある。現在,ほとんどの機種が遠心力ブ レーキ式であり、東京消防庁で使用している ものはこの形式である。したがってここでは, 遠心力プレーキ式及び油制御式について説明 する。

ア. 遠心力ブレーキ式

図-1,図-2に構造を示す。いずれも ロープの走行によりプーリーを回転させる。 プーリーの回転はプーリーギャー,遊星ギ

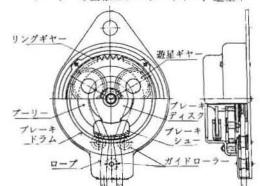
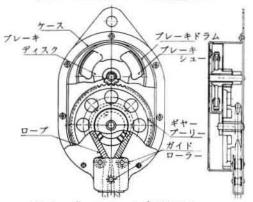
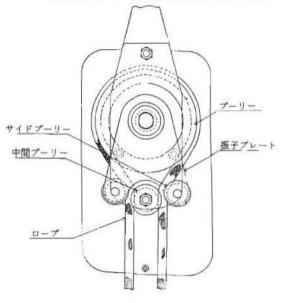


図1 遠心力ブレーキ式構造例1




図2 遠心カブレーキ式構造例2

• 第一研究室

ヤー等を通してプレーキディスクを高速で (2) ロープの構造 回転させる。この回転の遠心力により、ブ レーキシューがブレーキドラムに押しつけ られて摩擦力によりプレーキがかかり降下 速度を調整するものである。

イ.油制御式

構造を図-3に示す。この形式は、ロー プの走行によりプーリーが回転し、この回 転によりギヤーを通して羽根を回転させる。

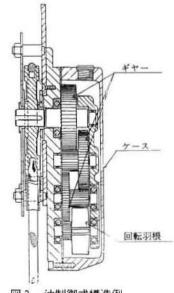


図3 油制御式構造例

このギャー及び羽根は油中に入っており、 羽根の回転に対する油の抵抗により降下速 度を調整するものである。

図-4に示すようにしんと外装からなって いる。使用されているワイヤーロープは3 ~3.5mmで,外装はほとんどが綿糸を用いてい

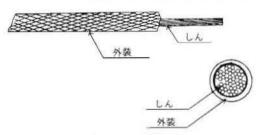


図4 ロープ構造例

るが、テトロンを用いているものもある。ま た,外装を接着剤でかためたものもある。外 装を含めたロープの外径は6~9㎜である。 なお、省令に定める材料、強度及び降下速度は 表一1のとおりである。

3. 実

(1) 降下速度

ア. 目 的

8年以上使用経過したものと未使用の緩 降機を比較するため。

イ、機 種

表一2に示す11台について実験を行った。 ウ. 方法

降下距離約 6.3 m~6.8 m, 荷重 25 kg, 40 kg, 65 kg, 80 kg及び 100 kgでそれぞれ 3 回 測定を行い、その平均値を求めた。(写真1 参照)

工. 結果

表-3及び図-5に示す。いずれも荷重 が重くなると降下速度は早くなっている。 このうち、No.6は他のものに比べて全体に 早かった。A社製は、100kgの荷重時以外は 未使用の方が遅かった。B社製はNo.9,11 の2機で、型式が異り、使用中と未使用の 違いがあるが、結果に大きな違いはなかっ た。結果について、実験方法が異ろが省令 規格を準用してみると、いずれも 16 cm/5 以上 150 cm/ s 未満であった。

才,考察

今回の実験結果は、過去の使用状況が明 確でなく、また、未使用のものとは材質、

表 1 省令規格(抜粋)

	L A	日本工業規格 (JIS) G3525 (ワイヤーロープ) に適合 するもので耐食加工を施したもの、又は同等以上の強 度及び耐久性を有するもの。太さ3 mm以上。					
材料	外 装	輸出検査の基準等を定める省令別表第4の22に適合す る綿糸A級品で金剛打ちとしたもの又は等以上の強度 及び耐久性を有するもの。					
76. 44.	390 kg×最大使用者数の静荷重を加	調 速 器 分解、破損又は著しい変形のないこと					
強度	える試験	ロープ 破断又は著しい変形を生じないこと。					
降下速度	 (1) 温度 一20°C~50°C (2) 降下高さ ロープの長さを最大限に使用する高さ。長さ15 mをこえるものは15 mの高さ。 (3) 荷重 25 kg, 65 kg, 80 kg若しくは100 kg,最大使用者数×65 kg若しくは80 kg又は最大使用荷重。 	16 cm/ s以上150cm/ s 未满。					

表-2 実験緩降機

番号	製造年	メーカー	構 造	備考	
1	昭和42年7月	A ≹±	遠心力ブレーキ式 (図-1の形式)	ロープ外装 は非加工品	
2	// 42 · 6	n	"	"	
3	# 43 · 10	11	n	.11	
4	n 43 · 10	л	n	n	
5	# 43 · 10	n	n	n	
6	// 43 · 10	n	"	"	
7	// 43 · 10	"	n.	"	
8	n 45 · 4	3)	n	"	
9	# 51 · 11	B 社 (II型)	n	ロープ外装は 接着加工品	
10	# 59 · 2	A 社	n	ロープ外装 は非加工品	
11	# 59 · 4	B 社 (I型)	// (図-2の形式)	ロープ外装は 接着加工品	

部品等が異るため単純な比較で性能変化を 考えることはできない。

今回の実験は装置の都合上、降下距離が 6.3 m~6.8 mと省令規格やローブ長さに比 べて短かく、降下距離が長くなればローブ 自重が加わるため降下荷重が増加し速度は 早くなっていくと思われる。

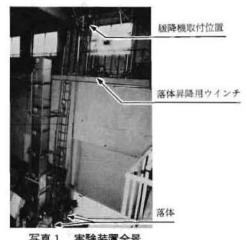


写真1 実験装置全景

(2) 水ぬれロープによる降下速度

ア. 目 的

ローブが水にぬれた場合の速度を確認す るため。

イ. 方 法

ロープを1時間水に浸しておき、前(1)ウ に示した方法により降下速度を測定した。 実験に用いたのは表-2のNo.2, 5, 6で ある。

ウ. 結果

表-3 速度測定結果

30L E1	ī	Ē	度	(cm/s)	
番号	荷重25kg	40kg	65kg	80kg	100kg
1	46	64	85	96	110
2	46	61	81	92	108
3	53	73	97	106	119
4	42	60	85	94	109
5	42	64	86	97	117
6	66	82	111	127	148
7	43	58	84	90	104
8	50	70	93	102	114
9	48	64	87	98	110
1 0	34	49	83	88	114
1 1	46	65	94	102	114

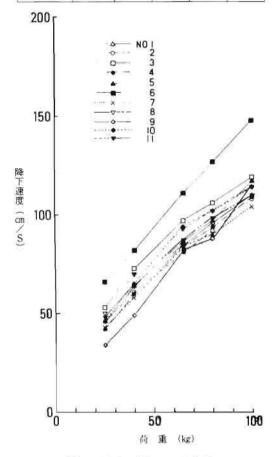


図 5 荷重に対する速度変化

表一4、図一6に示す。

この場合も荷重が重くなると降下速度が 早くなる。また、いずれもロープが水にぬ れている場合は、乾いている場合に比較し て降下速度が遅くなった。

工,考察

表-4 水ぬれロープ測定結果

番号		ī	ŧ	度 (cm/s)		
		荷重25kg	40kg	65kg	80kg	100kg
2	乾燥	46	61	81	92	108
4	水ぬれ	28	47	72	86	101
5	乾 燥	42	64	86	- 97	117
	水ぬれ	37	60	81	93	106
6	乾燥	66	82	112	127	148
	水丸れ	45	67	105	119	129

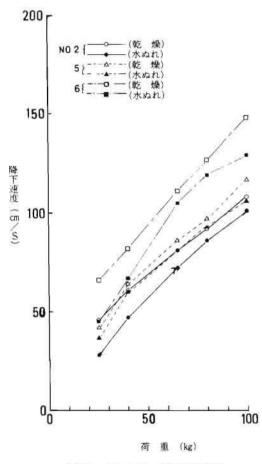


図 6 水ぬれロープの速度変化

ロープを水に浸した場合、外装が吸水により太くなるためプーリーとの摩擦抵抗が増加して降下速度が遅くなったものと思われる。なお、今回実験を行ったのは外装を接着剤で加工しないものであり、接着剤で加工を行ったものは吸水程度が異なり、ロープの太さの増加程度及びローブの通過による内部の水ぬれ程度が変るため、速度低下の程度も異ってくると思われるので、さ

らに実験を行っていく必要がある。

(3) 油制御式緩降機の超高層降下実験

ア.目的

遠心力ブレーキ式の調速器は超高層から 降下を行うと温度が上昇するが、これと調 速方法の異る油制御式の性状を把握するた め。

イ. 機 種

前2(1)イに示す油制御式緩降機

ウ. 方法

図-7に示すように、高さ216 mのピル

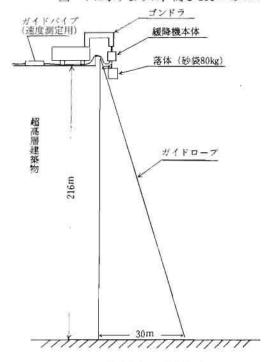
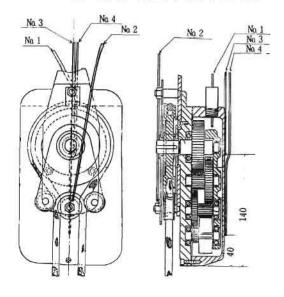



図7 油制御式の実験方法

- ローブは一端より15mの点を0mとし、10mごとに 250m点まで目盛を付けた。(ロープ全長280m)
- 2 ローブの0m点とガイドバイブの基準点を合せておき、実験開始によりストップウォッチで10mごとの印が基準点を通過する時間を計測した。


図8 油制御式の速度測定方法

の屋上からガイドロープにそって 80 kgの 落体を降下させ、図一8 に示す方法で速度、 図一9 の位置で温度を測定した。

工. 結果

(ア) 速度

表一5、図-10に示すとおりで、全体

- No.1 油温
- Na 2 中間プーリ軸近傍
- No.3 ケース上
- No.4 ケース下

図9 油制御式の温度測定位置

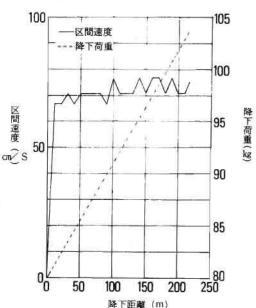


図10 油制御式の区間速度及び降下荷重の変化

表-5 油制御式の降下速度測定結果

降下距離 (m)	時間		速 度 (cm/s)				
	果	計	区間時間	平均速度	注 2 区間速度	降下荷重 (kg)	備考
	分:	秒	秒				
0	0 ;	0	0		0	80	ロープ重量約 1 kg/10m
1 0		1 5	1 5		6 7	81.1	
2 0		3 0	1 5		6 7	82.2	
3 0		4 4	1 4		7 1	83.3	
4 0		5 9	1 5		6 7	84.4	
5 0	1	1 3	1 4		7 1	85.5	
6 0	1	2 7	1 4		7 1	86.6	
7 0	1	4 1	1 4		7 1	87.7	
8 0	1	5 5	1 4		7 1	88.8	
9 0	2 :	1 0	1 5		6 7	89.9	
1 0 0	2	2 3	1 3	7 2	7 7	91.0	
1 1 0	2	3 7	1 4		7 1	92.1	
1 2 0	2	5 1	1 4		7 1	93.2	
1 3 0	3	0.5	1 4		7 1	94.3	
1 4 0	3	1 8	1 3		7 7	95.4	
1 5 0	3 :	3 2	1 4		7 1	96.5	
1 6 0	3 :	4 5	1 3		7.7	97.6	
1 7 0	3 :	5 8	1.3		7 7	98.7	
180	4	1 2	1.4		7 1	99.8	
190	4	2 5	1 3		7 7	100.9	
2 0 0	4	3 9	1.4		7 1	102.0	
2 1 0	4	5 3	1 4		7 1	103.1	
2 1 6	5 :	0 1	8		7 5	103.8	ロープ重量約0.7kg/6 cm

注 1 平均速度 = 所用時間 全降下距離

注 2 区間速度 = 10m 区間時間

の平均速度は72cm/sであった。また、 図-10からみると降下にしたがって増加 する傾向がみられた。

(イ) 温度

表-6,図-11に示す。

初期の時点では、中間プーリー軸近傍 が最も早く上昇したが、落体が地上に到 着する時点では油温が61.6℃となり、測 定点の中で最も上昇した。

才 考 察

- (7) 図一10からわかるように、降下するにしたがい、ローブ自重が加わるため降下荷重が増加しており、このため降ドするにしたがい、速度が上昇する傾向を示したと思われる。
- (イ) 初期の時点で中間プーリー軸近傍の温度上昇が大きかったのは、軸受の摩擦に

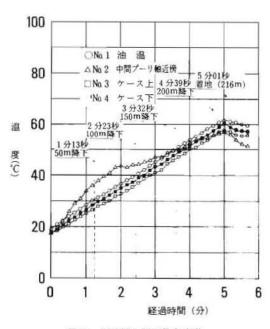


図11 油制御式の温度変化

表-6 油制御式の温度測定結果

経過時間		温		度(°C)	(31:	
分秒		No 1油 温 No 2 中間プー		Na 3ケース上 Na 4ケース下		備考	
0	0	18.8	17.0	17.3	17.5	実験開始	
	1 0	20.8	19.5	18.3	18.8		
8	2 0	22.3	22.3	19.8	20.5		
	3 0	23.8	25.8	20.8	22.3		
	4 0	25.3	29.0	22.5	23.5		
-	5 0	26.8	30.8	23.8	25.8		
1	0 0	28.3	33.9	25.0	26.5		
	1 0	30.0	35.9	26.5	28.3	1分13秒で50m降下	
	2 0	31.3	37.6	27.8	29.8		
4	3 0	32.5	39.3	29.0	30.8		
	4 0	33.9	40.7	30.0	32.2	-	
Ť	5 0	35.4	42.9	31.8	33.5		
2	0 0	36.6	43.4	32.7	34.9		
	1 0	37.8	42.9	33.9	36.1		
	2 0	39.0	43.9	35.4	37.1	2分23秒で100m降下	
	3 0	40.5	44.1	36.8	38.8		
	4 0	41.9	44.8	38.5	40.0		
	5 0	43.6	45.6	40.0	41.7		
3	0 0	45.1	47.0	40.7	43.2		
	1 0	46.5	47.0	41.9	44.1		
	2 0	48.0	48.7	44.4	46.1		
	3 0	49.5	49.7	45.6	47.5	3 分32秒で150m降下	
1	4 0	50.9	49.9	46.8	49.0	-	
	5 0	52.4	50.9	48.2	50.2		
4	0 0	53.8	52.6	49.7	51.6		
	1 0	55.3	53.6	50.7	53.1		
	2 0	56.7	54.3	52.4	54.5		
	3 0	58.2	54.3	53.6	55.8		
	4 0	59.7	55.5	55.5	57.5	4 分39秒で200m降下	
	5 0	60.8	56.2	57.0	58.9		
5	0 0	61.6	57.2	57.7	60.1	実験終了	
	1 0	61.1	55.8	57.2	58.9	5分01秒で落体着地	
	2 0	60.8	53.6	55.8	57.9	W 1	
	3 0	60.1	52.1	55.5	57.5		
1	4 0	59.6	51.2	55.5	57.7		

よるためと思われる。

(ウ) 遠心力ブレーキ式緩降機は、摩擦力による制動のため温度が上昇し易く、1.0 m/sの速度で累積降下距離200 m程度で約200°C前後に上昇するものがあり、1.5 m/sの降下速度では累積降下距離約400 m程度で破損する例が認められている。今回実験を行った油制御式は、216 mの連続降下でも最高温度は油温が61.6°Cで他点はこれより低く、また降下後も異常が認められなかった。したがって、繰り返し降下の場合をさらに検討する必要はあるが、遠心力ブレーキ式に比べて温度上昇の影響は少いと思われる。

(4) 温度測定

ア. 目 的

遠心力ブレーキ式緩降機の低高度での降 下による温度上昇を把握するため。

イ.方法

前(1)ウと同じ装置を用い、荷重 80 kg、降 下距離 6.8 mで降下したときのプレーキド ラム、ケースの温度を熱電対を用いて測定 した。実験に用いたのは表-2 のNo.4 及び No.11である。熱電対取付位置を図-12、13に示す。

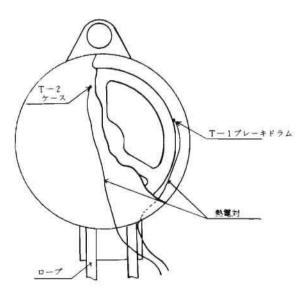


図12 No.4 緩降機温度測定位置

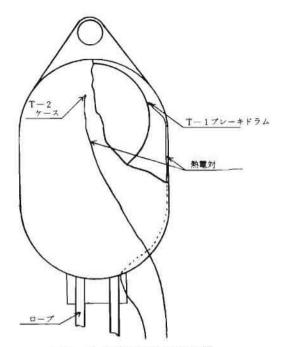


図13 No.11緩降機温度測定位置

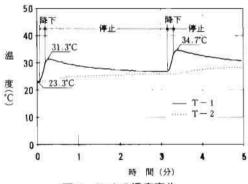


図14 No.4 の温度変化

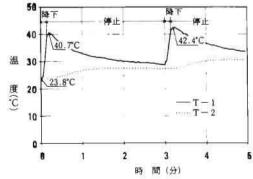


図15 No.11の温度変化

ウ. 結 果

図-14, 15に示す。

ブレーキドラムの温度上昇は1回目の降下で実験開始前に比較して、No.4 で 8° C。No.11で 17.1° C であった。油制御式は表 -4、5 から、20 m降下時点でも実験開始前に比較し 3.5° C -8.5° C の上昇で、遠心力プレーキ式の方が上昇しやすかった。また、2 回目は 1 回目より高くなった。

今回は6.8 mと降下距離が短かったので、 今後実験を行う緩降機のローブの最大使用 長さでの計測も行っていく予定である。

4. おわりに

緩降機を救助器具として用いた場合には、訓練、 災害現場等で用いるため使用頻度が高く、火災現場で火炎に接することなども考えられる。したがって耐久性、安全性等について今回の実験をさらに進めてゆくとともに、ロープについても、接炎、 損耗等を考慮した強度実験等を行っていく予定である。

5. 参考文献

(1) 「索道の非常救出システムの選定基準に関する研究」

運輸省交通安全公害研究所