
動力式ホース・カーの開発研究について

島 光 男*梅 澤 道 雄*

写真第1

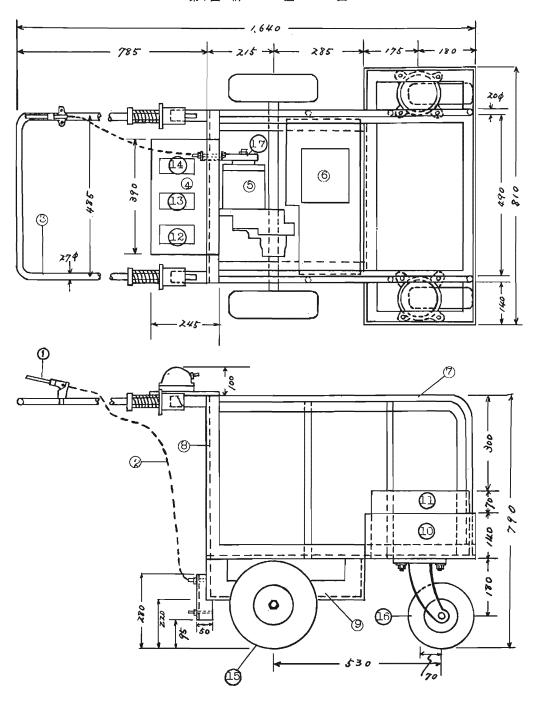
写真第2

1 まえがき

現在のホースカーによるホースの搬送,延長は人力で行なうもので、非常に大きな労力を必要とし、現場行動における労力の大半をホース延長のためについやしてしまう。登坂時におけるホース延長ではその影響が特に大きい。

ホース・カーに関する省力化については、以前からしばしば問題にされており、幾度か試作を試みているが、決定的なものをみないまゝ現在に至つている。最近では構内運搬車、ゴルフ・カート等小型の動力伝達機構の車が、民間企業の間で次々と開発されている。消防用ホース・カーの動力化に関して、これらの電動機構を利用することに着目し、ゴルフ・カートの動力伝達機構を使つて、動力式ホース・カーを試作したのでその概要を報告する。

2 仕 様・構 造


動力式ホース・カーの外観,構造は写真第1,第2 第1図,仕様諸元は第2表のとおりである。

動力源は、出力 250 Wの直流複巻電動機と40AHの 蓄電池 2 個を使い、車輪への動力伝達装置は、デフアレ ンシャルギヤー機構になつている。車輪は4個あり、

第1表

番号	部	品	名	備	考	番号		部	띪	名		備	考
1	ブレー	丰	レバー	制動,始動		10	バッ	ノテリ	— л	ミツ ク	ス		
2	"		ワイヤー			11)	バ	ツ	テ	y	_	12V, 40AH	
3	曳		手	27 ø		12	切	替	開	閉	器	前進,後進	
4	操	作	板	木製		13	主	開		閉	器	NFB 30A	
(5)	電	動	機	直流複巻12/	24V, 250W	130	切	替	開	閉	器	低速,高速	
6	リレー	ボ	ツクス			(15)	駆		動		輪	空気式	
7	ホース	、カ	- 本体	20 ø		16	丰	ヤ	ス	Я			
8	"		アングル	40×40		17	ブ	V			+	拡張式	
9	ホースカ	· — `	アングル	65×65									

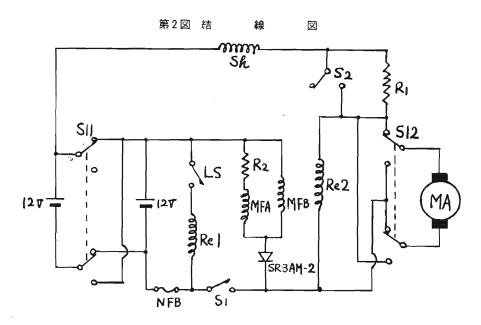
^{*} 第三研究室

第2表 仕 様 諸 元

	全		長	1,640 m m							
車	<u>全</u>		幅	810	"						
体	全		髙	890	H						
寸	ホイノ	レベ	ース	530	7						
法	-t-+A DC-W		前輪	630	n						
	早辆匠	車輪距離		680	"						
Ē	革 体	重	量	145kg							
卓	少 回	転	半径	460 m m							
倡		d)	機	直流復巻電動機12/24V250W4極 1,500rpm, 30A							
貞	是終 犯	咸返	比比	滅速2段デフ付 1:13.9							
#	判動	機	構	機械式							
To the	喜 1	T.	池	一般自動車用12V40AH×2							

駆動輪は直径30㎝の空気タイヤ2個である。電動機, ギヤー機構,車輪等については三菱電機の既製品をそのまゝ使い,台車フレームは当庁装備工場で製作,ぎ 装したものである。

(1) 運転要領


運転操作は、ノーヒューズ・ブレー カー を ONに し、曳手ハンドルのブレーキレバーをにぎるだけで、 モーターが作動する、運転要領の詳細については、結 線図によつて説明すると次のとおりである。

ア 停止時はマイクロスイツチLSがOFFで、常 にブレーキが効いた状態になる。発進は、ブレーキレ バーをにぎるとLSがONになり、リレースイツチS 1、S2が閉じモーターが作動する。

イ 前進,後退の切替えは、スイツチS12で行なう。

ゥ 速度切替えは、スイッチS11によりモーターの アマチュア電圧を12V, 24Vに切替えて行なう2段変 速である。

エ 電源をしや断し(ノーヒューズブレーカーをO FF),ブレーキレバーをにぎると,普通のホースカーと同様に人力で可動できる。

NFB: ノーヒューズブレーカー Si.S2: リレー接点スイッチ

SII :速度切替スペック

S12 : 回転切替スイッチ

LS:マイクロスイッチ

R₁:起動抵抗

MFA.MFB:モータースールド

MA: モーターアマチュア

SR:直巻コイル

3 性 能

性能については、コンクリート舗装路面の平坦地、 勾配6度、10度の坂道で空車、ホース積載本数5本、 および10本の場合について走行速度、負荷電流を測定 した。

(1) 摩擦係数

コンクリート舗装路面における,動力ホースカーの路面と車輪,差動機,軸受の摩擦などを含めた,全体の摩擦係数を測定した結果は,第3表のとおりである。

第3表摩擦係数

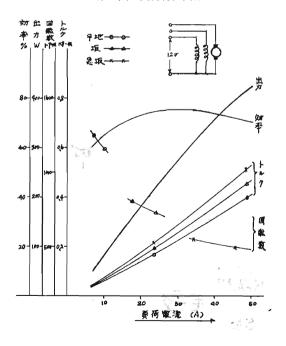
	全重量 W(kg)	けん引力 F (kg)	摩擦係数 μ = <u>F</u> W
空 車	145. 0	4. 5	0. 031
	207. 5	7. 0	0. 034
ホース10本積載	270. 0	10.0	0. 037

(2) 走行試験

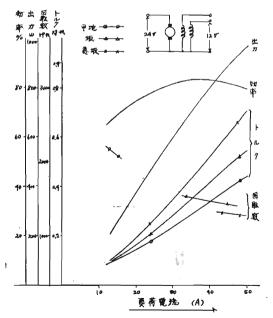
走行速度は、電動機入力電圧を低速(12V)、高速(24V)で20m走行し、ストツプウオツチで測定し

た。入力電流については、直流電流計を蓄電池回路に 接続し、発進時、走行時の電流を測定した。電動機出 力等の測定結果は、第3図、第4図および第4表のと おりである。

平坦地の場合


積載荷重 0 で、低速(12V)運転の時、入力電流 8 [A], 走行速度5.1[km/h], これは人間の歩く速さとほぼ同じであり、高速(24V)運転の時、入力電流13 [A], 走行速度9.0[km/h]で、これは人間のはや足よりや 3 速い速度である。また、ホース10本積載(積載荷重125kg)の場合でも、入力電流、走行速度ともにホースを積載しない時の値とほぼ同じである。

坂(勾配6度)の場合


低速(12V)運転の時,積載荷重0で入力電流18 [A],走行速度3.5[km/h],ホース10本積載した場合 入力電流30[A],走行速度2.3 [km/h]になる。高速 (24V)運転の時,積載荷重0で入力電流30[A],走 行速度8.0[km/h]である。

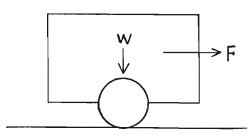
電動機の定格電流は30(A)であるから、上記の運転 条件の範囲を越えて連続運転する場合には、人力をも つて助けてやる必要がある。

第3図 負荷特性曲線

第4図 負荷特性曲線

	全重量	荷 重	ホース数	走行速度	(km/h)	電動機出力(W)		入	力 電	流((A)
				/C13/E/X	` ' ** '			発道	生 時	走 往	亍 時
	(kg)	(kg)	(本)	12V	24 V	12V	24 V	12V	24 V	12 V	24 V
平地	145. 0	0	0	5. 1	9. 0	59	202	30	50以上	8	13
(0°)	207. 5	62. 5	5	4.8	9. 0	78	252	n	"	10	13
	270. 0	125. 0	10	4.5	8. 5	270	288	u	"	10	15
坂	145. 0	0	0	3. 5	8. 0	155	590	"	u	18	30
	207. 0	62. 5	5	2. 8	7. 2	225	796	35	n	25	40
(6°)	270. 0	125. 0	10	2. 3	6. 5	270	913	4	"	30	47
急坂	145.0	0	0	2.7	7. 2	310	836	50以上	"	35	42
	207. 5	62. 5	5	2. 1	5. 4	420	960	ø	n	50	50以上
(10°)	270. 0	125. 0	10	_	5. 4	_			,		"

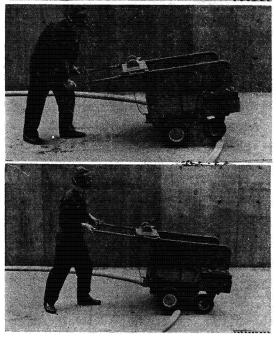
(3) ホースラインの乗越え実験


ホースの径と台車々輪の径との比は、現在65 対 300 であり、普通のホースカーでは、その比が65対 645 である。本試作機では、車輪の径が小さいので、ホースを乗越えられるかが当然問題となつてくる。

平坦地において150~200[kg]の積載荷重で、加圧した65ミリホースの乗越え実験を行なつた結果、補助輪を曳行ハンドルによつて浮かせてやれば、動輪は自力で乗越えることが可能であつた。写真第3、第4、第5は、ホース乗越えの状況を撮影したものである。

人間が曳行してホースを乗越える場合にも、車輪の 径が大きい方が有利であるが、これを動力によつて行 なう場合には、車輪の径をむやみに大きくすると電動 機出力が不足することになる。

4 理論と実測値


第5図

動力ホースカーの全重量が145 [kg] の場合について、電動機のトルク、回転数、出力、台車運転速度等を計算した結果は、次のとおりである。

(1) 第5図において、等速回転で走行している場合 の, 各部特性について計算すると,

D:車輪の直径

30(cm)

W:台車と荷重の全重量

145(kg)

μ:摩擦係数 (差動機を含む)

0.03

F:台車の可動に必要な力

 $F = \mu \cdot W = 0.03 \times 145 = 4.3 (kg)$

モーターには、入力電圧12Vで8[A]流れた、

この時のモータートルクTは

ただし E:モーターの入力電圧

I:モーターの入力電流

12(V) 8(A)

7:モーターの効率 N:モーターの回転数

60[%] [r.p.m]

Fと車輪軸に作用するトルクTHの関係は

$$T_H = F \times \frac{D}{2} = 4.3 \times \frac{0.3}{2} = 0.64 (kg - m)$$

モータートルクTは

$$T = T_{H} \times \frac{1}{K}$$

ただし K: 減速比 13.9

$$T = 0.64 \times \frac{1}{13.9} = 0.046 \text{ (kg-m)}$$

①式よりモーターの回転数Nは

$$N = \frac{0.976 \,\mathrm{E}\,\,\mathrm{I}\,\,\eta}{T}$$

$$=\frac{0.976\times12\times8\times0.6}{0.046}$$

=1,222 (r, p, m)

車輪回転数Nェは

$$N_{\rm H} = \frac{N}{K} = \frac{1,222}{13.9} = 88 \text{ (r.p.m)}$$

台車の運転速度Vは車輪の外周をしとすると

 $V = N_H \times L$

LはπDであるから

 $V = 88 \times 3.14 \times 0.3 = 83 (m/min)$

 \Rightarrow 5.0(km/h)

したがつて、同条件で動き出すとき30[A]流れた、こ の時, 台車の初速度は約18[km/h]になる。また, 全 重量145[kg]の台車を、引張り力F=4.2[kg]、入力電 流 I = 8[A], 走行速度V=5.0[km/h]で運転する場 合の、モーター所要馬力Pは

$$P = \frac{F \times V}{75} = \frac{4.2}{75} \times \frac{5,000}{3,600}$$

$$= \frac{4.2 \times 5 \times 10^{3}}{7.5 \times 3.6 \times 10^{4}}$$

$$= \frac{21}{27} \times 10^{-1}$$

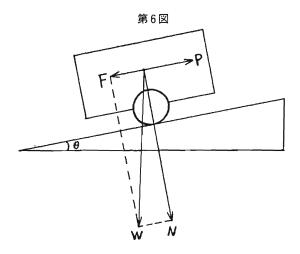
$$= 0.08 \text{ (P.S)}$$

$$= 60 \text{ (W)}$$

モーターの消費電力Wwは

 $W_R = E \cdot I = 12 \times 8 = 96 \text{ (W)}$

モーター出力Wmoは


 $W_{Mo} = E \cdot I \cdot \eta$

7は効率で60[%]であるからである。

 $W_{Mo}=12\times 8\times 0.6 \div 57(W)$

(2) 坂道の場合

下図において、坂道の場合については次の式を適用 すればよい。

斜面に垂直に働く力Nは

 $N = W \cdot \cos \theta$

ただし W:全重量

摩擦力 f は

 $f = \mu \cdot N = \mu \cdot W\cos\theta$

ただし μ:摩擦係数

引き上げようとする力Pは

P = f + F

 $= \mu \cdot W\cos\theta + F$

 $= \mu \cdot W\cos\theta + W\sin\theta$

5 考 殩

走行試験の結果を総合的に考察すると、平坦地にお いて65ミリホース10本積載し、走行速度は実用上十分 満足するものであり、入力電流も15(A)程度であるか らかなり余裕がある。坂道(勾配6度)の場合、ホー ス10本積で低速運転の時走行速度2.3[km/h],入力電

流30[A]であるから、これが連続運転の限界である。 したがつて、ホースカーの動力化ということに対して は、運用上のすべての条件を動力によつて満足させる ことは、電動機、蓄電池等のぎ装から考えて困難なこ とである。

結局,人力で曳行する力の一部を,動力を利用する ことによつて軽減するという考え方で開発を進めるこ とが必要であろうと思われる。実用化するには,車輪 の径等をさらに検討する必要があるので、今回の実験 結果を今後の研究開発資料にして行きたい。

6 おわりに

本試作機の製作ぎ装について、当庁装備工場に多く の協力をいただいたことに対し、謝意を表する次第で あります。