液体燃料の消火実験

市 川 治 臣* 池 辺 昇 一*

1. はしがき

液体燃料(主としてガソリン)を種々の条件のもとに燃焼させ、燃焼速度、火炎の高さ、輻射熱等を測定し、他の各種の実験値と比較検討し、今後、この種火災防御の基礎参考資料を得ようとするものである。

2. 実験方法

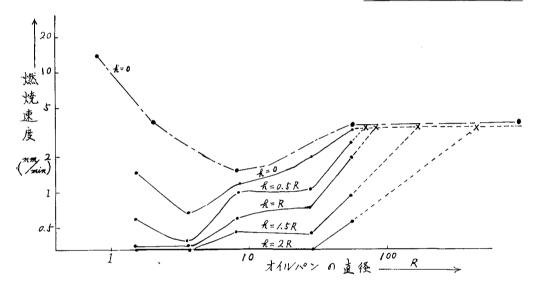
各種の直径のオイルパンにガソリンを注入し,点火後,油面までの深さを変化したときの燃焼速度(mm/min),火炎の高さ,輻射熱 (0.1,0.2,0.3cal/cm²・sec) の受熱距離を測定する。

3. 実験結果

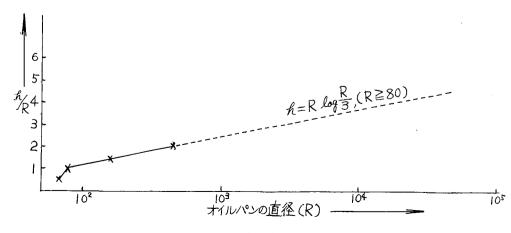
次表のとおりである。

		表 1	実	験	結	i	果			
深さ(h)/オイル パンの直径(R)	オイルパ ンの直径 (cm) (m	燃焼速度 v	さ	H/R		受 熱	距	離	L (cm)	
		(mm/min)			0. 1cal	L/R	0. 2cal	L/R	0. 3cal	L/R
OR 面	1. 5 3. 6 8. 3 28. 3	0. 69 1. 25	23. 0 40 133	6. 4 4. 8 4. 8		2 5	 80			0.8
1 1	55 90	3.50		1.9	160 210	3.5 2.9 2.3	90 150	1.6 1.7	30 38	0.5 0.4
	1.5	0.20	11	3.0		_	_	_		_
0.5R	8. 3 28. 3 55 90	1.00 1.11 2.95	101	4.3 3.6 1.7 1.8	27 125 168	0. 9 2. 3 1. 9	13 52 80	0.5 0.9 0.9	10	0.9
	3.6	0.11	0. 09 — 0. 11 6. 8 0. 63 27	1.9	_ _ _	 		_		
loR am	28. 3 55 90	0. 79 1. 99	92	1.9 3.3 3.3 1.5 1.7	15 61 60	0. 5 1. 1 0. 7	5 15 26	0. 2 0. 3 0. 3	0 0	
<u> </u>	1.5	. 0	$\begin{bmatrix} 0 \\ 0 \\ 7.2 \end{bmatrix}$	0 0 0. 9	<u> </u>	_		_		=
1.5R 面	8. 3 28. 3 55 90	0. 44 0. 37 0. 92	60	2. 1 1. 3 1. 7	5 36	0. 2 0. 7 0. 7	0 15 26	0 0.3 0.3	0 0	0
<u> </u>	1.5	0	0 0		_	_	_	_	_	=
20R 海面	8. 3 28. 3 55 90	0.60	0	0.9	0 28		10	0 0.1		

^{*} 第一研究室


燃焼速度(v)
 グラフ1について考察する。

グラフ1の実線は表1の燃焼速度を示す。一点鎖線は油面までの深さ(h)が零における文献値の燃焼速度である。本実験値はこの燃焼速度と一致している。 そこで、点線で示すように延長し、表面燃焼点を求


グラフ 1 (燃 焼 速 度) — (オイルパンの直径)

文献值 (Fire Research) h=o	
外 挿 線	
´ 口から油面までの深さ	
オイルパンの直径	
表面燃焼点*	

表面发	然 焼 点			
R (cm)	h			
70 80 160 450	0.5R R 1.5R 2.0R			
グラフ2	参 照			

グラフ 2 表面燃焼臭

める。この点 (×印の点) は、hに関係なく表面燃焼を示すオイルパンの直径 (R) と考える。

グラフ2はこの表面燃焼点を示す。これから $h \in R$ について、h = log(R/3) の関係式が求められた。

2. 火炎の高さ(H)

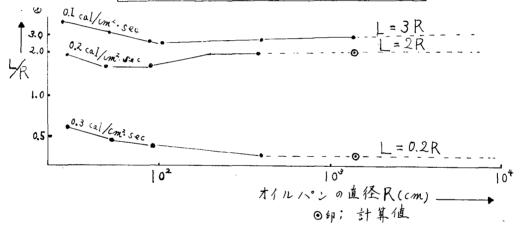
グラフ4はオイルペンの直径と火炎の高さの関係が オイルペンの口より油面までの深さによりどのような 影響を受けるかを示したものである。

このグラフから $R \ge 2.5 \sim 3$ mになるとHは h に関係なく、一定となり、Hと Rについて、H=2 R の関係が求められた。

3. 輻射熱 (Q) の受熱距離 (L)

h=0 の場合が一般的であるので、これについて考察する。

表 3 受熱距離L(cm)


(h = 0)

受熱量 燃焼面 の直径	0. 1calcm ⁻² sec ⁻¹	0. 2calcm ⁻² sec ⁻¹	0. 3calcm ⁻² sec ⁻¹
28cm	100 (3. 5)	80 (2. 1)	20 (0.7)
55cm	160 (2. 9)	90 (1.6)	30 (0.5)
90cm	210 (2. 3)	150 (1.7)	(38) (0.4)
1, 400cm	3, 920 (2. 8)	$ \begin{array}{c c} (2800) \\ (2.0) \end{array} $	$(233) \atop (0.2)$

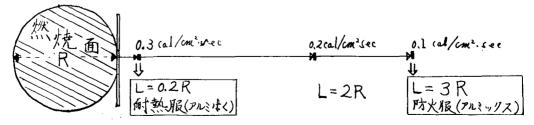
(注) (̄)印は Q_n=KL⁻²より求めた計算値,()の数値は L/Rの値

グラフ3

オイルハッンの直径Rと輻射熱の受熱距離上の関係

グラフ3から、QによりLとRの関係が次のように 求められた。

 $Q=0.1 cal/cm^2 \cdot sec$ (アルミックス防火服の表面温度は約160°C) の場合は、L=3R


Q=0.2cal/cm²·sec の場合は,L=2 R

Q=0.3cal/cm²・sec (耐熱服の表面温度は約250°C)・の場合は L=0.2R

図1はこの関係を図示したものである。

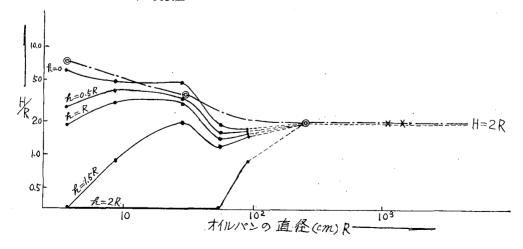
図 1

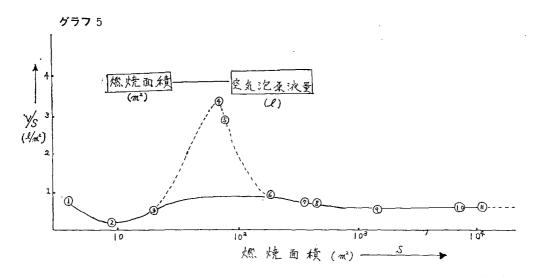
燃焼面の直径尺と輻射熱の受熱距離し

·4. 空気泡原液の使用量 (V)

表2は各事例を参考にしたものである。グラフ5は 表2をグラフに示したものである。 これから、燃焼面積(S)当りの必要な空気泡原液 量(V/S)を考察すると、V/Sは0.5~0.7となり、 これから $V/S = 1(\ell/m^2)$ と考える。

燃	焼面積S (m²)	空気泡原液使用量V (ℓ)	V/S (ℓ/m^2)	備 (東消とは東京消防庁の略名)
1	4	2.3	0.7	消火用泡薬剤の消火性能評価の際の大小規模消火実験 の相関々係 新居氏
2	9	1.4	0. 2	深田工業KK ガソリン
3	20	8. 7	0. 5	空気泡による油火災実験(大阪市消防局) S 39. 7.27 ガソリン
4	70	234	(3.3)	タンクローリー消火実験報告 (川崎消防署) S 39.11.20
5	78	216	(2.8)	東消第一方面本部演習 S.41 廃油
6	180	167	0.9	油火災実験(広島消防局)S 39.12.10 C重油
• ①	360	240	0.7	広水面上における油火災実験(東消) S 38.11 灯油
8	433	280	0.7	危険物火災消防総合演習(徳山消防本部) S 39. 5.19 C重油
9	1400	700	0.5	Fire Code No. 11
10	7163	4500	0.6	羽田空港航空機事故 S 41. 8.26 (東消・空港消防課)
(11)	16000	7080	0. 5	羽田空港航空機事故 S 41. 3. 4 (東消・空港消防課) コンベア880, ケロシンJT—1


グラフ 4 (火炎の高さ/直径) — (オイルパンの直径)


◎印:文献値 (Fire Research)

×印:文献値(火災 vol 14 No. 3, '64, 広水面における油火災実験値 S. 38. 11)

h :油面までの深さ (cm) R :オイルパンの直径 (cm)

印:実験値

5. ま と め

本実験等から、燃焼速度、火炎の高さ、輻射熱の受 熱距離、必要な空気泡原液の量等と燃焼面積(または 直径)の関係を考察し、実火災に関する近似値を求め た。 しかし、本実験の回数、規模、種類、気候等からすべての場合に無条件で適用すべきではなく、周囲の状況等の諸因子を勘案のうえで、本実験の近似値を参考として用いることが望ましいと考える。

なお,詳細な消火技術,規定等については省略して 考察したことを附記する。