地震時における石油タンク内の液面動揺防止

に関するモデル実験(第2報)

伏	見		英*
北	岡	開	造**
Л	田		孝*

1. はじめに

昭和39年6月16日,新潟県粟島沖に発生した大地震 は、各地に多大な損害を与えたが、中でも危険物タン ク群は壊滅的被害を受け、各関連機関に衝撃と教訓を 残した。

東京消防庁管内の危険物施設は、約84,000件にもの ぼり、これらの防災対策は、行政施策と自主管理体制 によって効果をあげている。

筆者らは, 危険物の安全化の研究を行っているが, 今回は, 石油タンク耐酸化の研究に関連して, 地震動 による石油タンク内の液面の動揺が, 出火危険に及ば す影響と, その防止方策について, 円筒型モデルタン クによる正弦波振動実験を通じて, 実験的に検討した ので報告いたしたい。

2. 実験概要

石油タンク内の液面の動揺を防止する方策の基礎実 験として,円筒型液体モデルタンクの振動特性実験を 行い,正弦波加振時における自由液面の応答振幅を, 単純な周波数分析によって把握した。

また振動時における液体モデルタンクの不等価荷重 を測定し,静力学的等価荷重を受ける場合との相異を 実測した。

なお液面動揺防止装置については,第1報に引き続 き、タンク側壁に固定した区画板装置,ならびに,浮 屋根タンクを想定した,区画板装置,あるいは気泡発 生装置等を試作し,振動実験を通じて,比較,検討を 試みたものである。

3. 実験日時,場所

実験日時 昭和48年4月~昭和49年3月 実験場所 東京都渋谷区幡ヶ谷1-13-20号

* 第二研究室 **日本提消防署

消防科学研究所 振動実験室

4. 実験供試体、計測機器

(1) 円簡型モデルタンク

- 鋼 板 1000 \$\phi \$\ny\$ \$
- 塩 ビ 1000 ¢ タンク(H:800)
- 塩 ビ 500 ¢ タンク(H:800)
- 浮屋根 1000 ¢ モデルタンク(H:700)
- (2) 液面動摇防止装置 区画板, 気泡発生装置
- (3) 動電型大型加振機 (900kgG)
- (4) 水位計(静電容量式)
- (5) ひずみゲージ
- (6) 記録計

5. 実験項目

- 自由液面の挙動
 - イ. 低振動数域による応答
 - P. 高振動数域による応答
- (2) 液体タンクの不等価荷重
 - イ. 1次共振時
 - 口. 2次共振時
- (3) 液面動揺防止装置の効果
 - イ. 固定型防波板
 - 口. 浮型防波板
 - ハ.気泡

6. 実験結果

(1) 自由液面の挙動

正弦波加振時におけるモデルタンク内の自由液面の 挙動を,直径1mの円筒型タンクを用いて,水理模型 実験を実施した。このタンクは,幾何学的相似率から すれば,水深0.42m時で,水深/直径=0.42となり, 5000KL実物タンクの1/25相当する。また,実験は, 事故防止上,水を使用したが、原油とか,他の重質油 は、完全流体と仮定することはできないが、振動によ る水の応答が、粘性液体よりも高ければ、実験的に安 全側と考えられる。

正弦波反復加振した場合の,自由液面の応答は,静 水面との変位角が小なるときは,運動系は線型であ り、このモデルタンクは、水深0.42m時で,いわいる 共振状態にある(モデルタンクの自己振動周期と加振 機の振動周期が一致する)と,10cm/sec²程度の加振 力で,大動揺し,波形に乱れを生じるため,7.5cm/sec² 時の,加振振動数自由液面の応答変位倍率を求めた。 図1,

この単純な周波数分析結果から明らかなように, 0.92HZ, 1.65HZ, 2.1HZ に他の振動数帯域にみ られない, 応答波のピーク値が存在する。これらは, 1次,2次,3次の共振点であるが,このモデルタン クは、水深0.42m時にあっては、0.92HZに大振幅を 誘発する振動特性をもっている。この共振ピークは鋭 く、共振点を離れると、自由液面の応答変位は非常に 小さくなる。0.92HZに対応する応答波倍率は60倍を 越すが、一般的に、現存する石油タンクの危険振動数 域は低振動数域であるといえる。故にこの低振動数を 実験条件とすれば、安全側と考えてよく本実験におい ては、低加速度による自由液面の応答を求めたが、高 加速度になると、波形が乱れるが、応答変位絶対値は 増加する傾向が認められた。また応答波の変位測定は に静電容量式のレベル発信器を使用した。水位計の設 定位置は、加振方向に一致するタンク直径上の側壁が 望ましく、側壁近傍に設置した。

低次の振動数においては、低加速度で大振幅を誘発 するが、高振動数域にあっては、 50cm/sec² 程度の加 振力を与えても、表層面にさざ波が立つ程度である。 しかし、高振動数一高加速度で加振した場合の運動系 は、非常に複雑で、水位計では適切に運動を把握でき ないことから、目視観察を行った。 これによれば、 3.3>5>10H Z の順に,加速度(150-450cm/sec²) による液面の応答変位の増加が認められ,相当数の三 角波が静木面と鉛直な方向に生じた,したがって,1 次共振波のような衝撃力をタンク側壁に与えないと考 えられるが,高振動域にあっても,高加速度になれ ば,液面の動揺は増大するわけであり,地震動の周波 数(周期)特性として0.1,0.2,0.3秒は,ありふれ たものであると考えることができる。

次に,この水平加振による自由液面の応答変位測定 は,動揺防止効果を検討する基本実験であるため,実 験値と理論値を比較する意味で,線型理論による液深 と直径を与えることによって固有円振動数を算出する 理論式から計算値を求めた。千田・中川による公式を 採用した。表1。表2。

表1 7n值

n	I	2	. 3	4	5
ĭn.	1.841	5 3 3 2	8.536	11.71	14.86

表 2 理論共振振動数

大派了	I	2	3
0.42	0.913	1.6247	2.01
0.40	0.906	1.6251	
0.30	0.856	1.6227	
0.20	0.757	1.6027	
0.10	0.567	1.4427	
0.05	0.487	1.1351	

ここに、Pn:n次共振円振動数、g:重力加速度, R:g > 0半径,H:液深,7n:係数。表1o(1)式 は,完全流体の流れで無渦運動と仮定したときの速度 ポテンシャルの存在から,境界条件を加味した連続の 方程式を解くことによって求められる。表1 κ 7n値, 表2 κ 3次までの共振振動数を示した。

これから,水深0.42m時の1次,2次,3次共振振 動数の実験値と理論値を比較すると,若干のバラッキ があるが,よく一致することが分かる。なおバラッキ に関しては,複雑な要因が考えられるが,共振現象に ついては,水理模型実験の再現性を立証したものと考 えられる。なお1次共振は,水深の変動に大きく影響 するが,3次共振になると,ほぼ水深に無関係に一定 値に収束するようになる。これは7n≫0ではハイパボ リックタンゼントが1に近似されることは容易に推定 される。また(1)式の Pn の算出は、非常に複雑である が、円筒型タンクのうち、細長いタンクに限れば(H /R≫0)円筒型タンクの固有周期はタンク径の平方根 の函数として表わされる。証明略。

(2) 液体タンクの不等価荷重

共振時において,液体タンクが受ける不等価荷重を 実験的に確認するため,歪測定実験を行った。荷重変 換器の静特性を図2,1次,2次共振時の荷重変位を 図3,図4,それらの波形変化を図5に示した。

実験に使用した変換器の特性から,最大許容荷重は 100KGで,変換器3個によってタンク底板を支持し, 静水位21cmとしたときの,変換器1個が受ける荷重 は,78.5KGであった。1次共振時における底板の最 大変位は,7.5cm/sec²で,静水面上部27KG,静水面

上部で26KGであった。5 cm/sec² では, それぞれ23 KG,22KG,2次共振時においては,30~100cm/sec² まで増大して実験を行ったが,100cm/sec² では,7.2 KG,5.8KGと差異があかが,2次共振時において は,高加速度を与えても,1次共振時の約1/4 程度 で,やはり1次共振時に変位は最大になることが判明 した。

(1),(2)の実験から、タンク内の液面の動揺は、液の 溢流、噴出の危険ばかりでなく、タンクの不同沈下に も影響し、真円度を要求する浮屋根タンクなどでは、 液体の動揺防止の意義は大きいと考えられる。

(3) 液面動揺防止装置の効果

F

1 Sec

(イ)防波板の効果

-700-

常圧貯蔵タンクとしては、コーンルーフ,リフタル ーフ,低温常圧,浮屋根タンク等があるが,一般的な

(3)

ものはコーンルーフタンクである。施設の大型化にと もなって、石油の蒸発損失防止を考慮した浮屋根タン クも増加の傾向にあるが、浮屋根タンクは、構造的に、 パンルーフ シングルデッキポンツーンルーフ、ダブ ルデッキポンツーンルーフ型の三型式が普通使用され ている。コーンルーフと浮屋根タンクは、耐震構造的 には、別個に取扱わねばならないが、波の動揺エネル ギーを防波板によって軽減しようとすれば、基本的に 同一であるとして、まず簡単な防波板装置を試作し た。図6。

図6

(I)~(IV)を基本板成とし,(V)~(VII)は,液体の 回転防止効果をねらったものである。表3に防波板の 効果を示した。なお実験条件は,振動数0.92HZ, 1.65HZ加速度7.5cm/sec²である。

				(cm)
振動教	振動数 0.92 HZ		1.65 HZ	
TAK HE SU	d 10	d 5	d 10	d 5
(1)	3 3()		0.4 (<u>1</u>)	
(11)	3.3(<u>+</u>)		0. 5 (<u> </u>)	
(11)	2.7(1)		0.2 (¹ / <u>25</u>)	
(1∨)	2.5([†] / ₁₀)	$6.0(\frac{1}{5})$	0.3(17)	0-3(¹ ₁₇)
Free	27.3	27.3	5.0	5. Q

表3 防波板の効果

()内効率

この実験から,防波板を設置しないときの自由液面 の応答変位絶対値は,1次共振時で最大27.3cm,2次 共振時で最大2cmの全振幅値を示した。これらによっ て示される液面の動揺は,表3に示すように,防波板 の板成を増加すれば,液面の動揺を消滅する傾向を示 しており,例えば防波板(IV)の板成は,自由液面の動 揺を1/10程度に消滅させることができる。2次共振時 においては,防波板の板成に対応した効果が得られな かったが,これは,1次共振波形と2次共振波形の相 異が主なる要因と考えられ,応答波高絶対値が小さく 問題はないが,浮屋根タンクのポンツーンのロッキン グには微妙に影響するものと考えられる。また防波板 板成(W)において,加振方向に $\pi/4$ だけ回転して実験 したが,効果はほぼ同一であった。

円筒型容器の場合, 共振点近傍での正弦波反復運動 により, 液面が見かけ上回転する傾向 が 認め られる が, 500 ¢ タンクに (V)~(VI)のような, 回転防止板 を設置し**物線験**を行ったが, 回転防止効果は認められ たが, 液面の動揺防止効果はよくなかった。

(中) 浮屋根モデルタンクにおける防波板の効果

浮屋根タンクは、液面上にポンツーンを浮かせる型 式であることから、厳しい耐震性が要求されるものと 考える。すなわち、地震動によってポンツーンが動揺 し、タンク側壁に伝達力を作用させると同時に、地震 動と液体タンクの自己振動周期が一致し、加振力がき わめて大きく与えられた場合、液面の動揺による溢流 噴出の他、ガイドボールの破損等が考えられる。そこ で、ポンツーンのモデルとして、直径0.8mのフロー ト下部の中央に区画深さ20cmの防波板を設置して(イ)と 同様な方法により、1次、2次共振時における防波板 の効果を検討した。表4。

表4 防波板フロート 効果

0.92HZ	1.65HZ
26.96(60)	6.2(44.7)
1.43(3.2)	0.48(3.44)
<u> </u>	1 3
	0.92HZ 26.96(60) 1.43(3.2) <u>1</u> 9

()内応答倍率

この実験から、フロート下に防波板を設置すれば、 フロートの動揺を抑えることが基本的に可能であると 判明し、簡単な1000¢浮屋根タンクを試作した。

図7 浮屋根モデルタンク

このモデルタンクは、2/5R 区画の板成で、16 個の 浮き子によって、静水面下5 cmで浮くように、浮力の 調節が可能である。1 次共振時において、このフロー トは、8 cm/sec² までは、ロッキングしなかった。水深 を0.42 mとし、タンク保有空間を10%とすれば、0.46 m時を溢流点と考えられるが、10 cm/sec² を越えると フロートの揺れと、若干ロッキング現象を呈したが、 20cm/sec² までは溢流点に達しなかった。

以上により,浮屋根タンクも,ポンツーン下に防波 板を設置すれば、地震動による液体動揺を抑えること が可能であると,このモデル実験からは類推された。 (印気泡による効果

図8に示す気泡発生装置を試作し、効果を検討した が、ほとんど効果は認められなかった。送気圧を大き くすると(Ma×10kg/cm²)、加振時の液面の応答に相 乗する傾向があり、送気圧にも限界があり、したがっ

て液体内部に気泡を発生させることによって、液体タンク自体の自己振動周期を移行させる実験を試みた が、液面の動揺防止効果は認められなかった。

7. 考察

正弦波加振時における,モデルタンク内の液面の動 揺振幅は,静水面下に防波板を設置することによって, 消滅されるという実験結果を得た。これをまとめると (1)1次,2次,3・,……の共振時に対して有効であ る。(2)板成の規模は大なるほどよく,区画面積の数が 多いほど有効である。(3)加振力を大きくすれば,液面 の応答変位振幅は大きくなる傾向にある等のことが明 らかとなった。加振力を大きくすれば自由液面の応答 は増大する反面,例えば100cm/sec²のような高加速度 になると,液体の複雑な動きにより応答は,減少する 傾向もあり,水の減衰なども考慮されるべきである。 図9。

図9から,加振振幅に対する自由液面の応答倍率 は、50cm/sec²で12.6、100cm/sec²で6.17と非常に小 さく、7.5cm/sec²で61.3と高い。このことは、高振幅 加振実験を行う場合、問題となろう。

7.5cm/sec², 30cm/sec²時の防波板の効果を, 周波数 毎に分析した結果を図10, 図11に示し, 図12 に 30cm/ sec² 時の水深をパラメータとした, 自由液面の応答倍 率を示し, 図13に応答波形を示した。加振力を増加す れば, 防波板の効果は減少する傾向にあることが判明 した。

(5)

実際の地震動による液体タンクの最大応答波高であ るが、例えば新潟地震の記録から、当時、加速度 50 gal, 地震振動数 0.17H Z を単弦振動と仮定して、地 震振幅を求めると、片振幅50cmとなる。このような地 震振幅に対して、当時の 5,000K L 浮屋根タンク直径 25.2m、高10.7m,液深,当時 8 m)の液面の最大応答 波高を Housner理論式から求めると、0.81mとなる。 山本によれば、当時このタンクは、地震動によるタン ク側壁と、ポンツーンの衝突のキズから、1.5mの振 幅で動揺したと指適している。地盤が長周期の振動を 行えば、液体タンクは、大きく動揺し、この長周期の 繰返し数が多くなれば、液面の応答振幅は当然大きく なるわけであるが、地震動においての同一周期の繰返 し数は、およそ5~8回程度と考えられている。

したがって、合理的な防波板板成は(1)想定する地震 動、(2)地盤の地域特性等によって検討されるべきであ るが、ここでは、湯本による消滅速度一流速の関係か ら、前述した地震動による5,000KL浮屋根タンクの液 面の動揺を1/10程度に消滅する板成を求めた。図14,

図14 d/H-R/H曲線(5)

R/H=1.57 に対応する d/H≒0.095。故に d=0.76 (m),したがって 2/5R 時において区画深さ0.76mの 板成が必要とされたことになる。この区画深さは,液 深のおよそ10%に相当する。いずれにしてもタンクを

完全に仕切るような防波板は,機能的に問題があると 同時に経済的にも不利であるが,H≫D型のタンクの 板成規模についても,今後実験的に検討されるべきで ある。

モデルタンク振動実験を通じての経験的事実から, 1次共振時のタンク内液面の挙動をみると、タンク側 壁に近いほど、表層面の流れの方向は、接線勾配が大 で、静水面と鉛直をなす傾向にあり、同時にタンク中 央部は、接線勾配が小である。このことは、タンク中 央部から側壁に向って、1枚の薄い板を垂直に移動し ていくときの流れから確認された。したがって、この 流れの接線方向に垂直となる位置に、防波板を設置す れば、効率よく波の動揺エネルギーを消滅することが できると考えられるが、この波返し板とも言うべき装 置は、大型タンクについては技術的な問題が残るわけ で、局所的に大きな力を受けるような構造は望ましく ない。このモデルタンクにおける区画は、2/5Rとし ているが、タンク中央部と側壁を避けている。

コーンルーフタンクの場合については、液深の変動 を考慮しなければならないから、固定式にも問題があ るが、浮型の場合、液面動揺による防波板と側壁の衝 撃作用を軟弱化するシール機構が必要であり、緩衝材 の適用性を考慮しなければならない。

いずれにしても,波のエネルギーを防波板によって 消滅することは、コーンルーフ、フローティングルー フタンタにかかわらず,基本的に可能であり、ことに フローティングルーフにあっては、雨水によるポンツ ーンのひずみ、変形を予防し、構造的補強策としても 有効であると思料する。

8.終りに

単純な円筒型モデルタンクによる正弦波振動実験を 通じて,液体の動揺防止が,石油タンクの耐震化に関 しては基礎的なものであるにもかかわらず,有効であ ることが証明された。この防止装置の方策としては, 2,3の方法が考えられるが,ModelからProto Typeに Scale Upしたときの,力学的諸問題,地震 動に対する実物液体タンクの最大応答波高,あるいは 液体の回転現象等については,なお究明されるべきで あるが,ここでは,山本善之,山本鎮男,Housner等 の理論を参考とするにとどめた。

今後は,地域的特性から見た石油タンクの安全性に ついて検討するとともに,効果的な防止装置の開発を 考慮しており,第3報として報告する考えである。

終りに,本研究は,液体動揺防止に関する,大型モ デル実験であり,多くの貴重な文献を参考とした。 ここに,深甚なる感謝の意を表します。

9. 参考文献

- K. Senda & K. Nakagawa : Technology Report of Osaka University, 4, No.117(1954)
- (2) 加賀万亀男:地震時における原子炉容器内の水の 振動,日立評論,45,4(1963)
- (3) 堀内三郎・秋田一雄・中久喜厚・宮田作:新潟地 震にともなう油タンク火災の出火原因等の調査研 究,防災技報第12号(昭和41年3月)
- (4) 山本善之:地震による石油タンクの液面の動揺と 衝撃圧力,高圧力,3,1(1965)
- (5) 湯本権六:地震時におけるタンク内の液体および 浮屋根の振動とその防止装置,安全工学,7, No.3 (1968)
- (6) 自治省消防庁:新潟地震火災に関する調査研究 (1965)
- (7)藤井澄二:危険物と地震災害,大都市震災対策参 考資料(1974)
- (8) 山本鎮男:地震波の長周期成分が長周期構造物に およぼす影響,建築技術(1974年6月)
- (9) 武藤清: 耐震設計シリーズ(No. I~No. 5)(丸善)
- (10) 入江敏博:液体容器の振動特性,機械学会誌
- (11) 金田功,小川清和: 浮屋根貯そうの振動実験,高圧力, 3, No.1 (1965)
- (12) 内田稔: 危険物の安全化, 消防科学研究所報10号 (1973)