英*

屋外石油貯蔵タンクのスロッシング防止方策

について 第4報(最終回)

1. まえがき

水島流出油事故を契機として,屋外石油タンクの安 全対策に関する技術基準が,51年1月,消防庁から通 達されたことにより,保安対策も一段と強化されるこ とになった。

筆者らは、地**援**時の石油タンクの安全対策のうち、 浮屋根型タンクのスロッシング防止対策研究を実施し てきたが、第3報までの問題点として、ソフトシール の液面滅衰効果の有無、およびスロッシング防止装置 の鋼製タンクへの適用の問題等が未解明であったこと から、その最終回として、相似法則を緩和した鋼板モ デルによる対震挙動実験を実施した。

また近年,大気汚染防止の観点から,揮発性液体を 貯油する既設の石油タンク内に設置する傾向が見られ る蒸発損失防止装置(インターナルフロート)の対震 実験を行ったのでその実験結果について報告する。

2. 実験に関する諸項目

- (1) 実験項目
 - ア,ソフトシール,ガイドポールの減衰効果
 - イ,スロッシング防止装置の効果
 - ウ, シエルの破壊試験
 - エ,シエルのひずみ測定(底板傾斜<u>8</u>)
 - オ、蒸発損失防止装置の対震実験
- (2) 供試実験体の構造概略

ア,タ	ンク本体		写真1-	-(1), (2)
イ,ポ	ンツーン	· · · · · · · · · · · · · · · · · · ·	······································	1 —図 2
ゥ,防	波プレート…		······································	3 一図 6
エ, ソ	フトシール…		••••••	·····図 7
オ,イ	ンターナルフ	ロートモデノ	レ…写真 2 -	-写真 4
(3)供認	式実験体の材質	t		
7 モ	デルタンク本	体		·· S S 41

*第二研究室

		Л	田	孝*
イ	トップアン	グル・・・・・	••••••	S P C C
ウ	ウィンドガ・	- ター・・・・	•••••	
Ŧ	ゲージポール	v	••••••	
オ	ポンツーン			
	デッキプレ・	-		
	防波プレー	۰۰۰۰۰		SPGI
カ	ポンツーン・	サポート,	・イプ	
	デッキプレ-	-トサポ-	- トパイ	プー・・・
キ	ユニバーサノ	レジョイン	/ ト	S T P Y 41
ク	ソフトシーノ	<i>د</i>		…CR, ウレタン
ケ	インターナノ	レフロー	トモデル	······AIPIH
ц	シールワイィ	۰		ブナN
(4)	計測機器			
7	液面計			
イ	動歪計			

伏

見

- ウ 変位計
- エ 起振機
- オ 記録計

3. 実験結果

実験項目(1)のア,イ,に関する実験結果を図8-図 10に示した。図8は、ソフトシールのない浮屋根モデ ルフロートの、共振時 $(T_0/T=1)$ における 最大応 答液位とランダム波 (300gal white noise+ 10gal sine wave)による最大応答液位を示したものである。 なお、静水位100㎝時の、1次共振振動数は0.96Hz で ある。

図8から,正弦波 30gal 時の 最大応答液位 hmax= 300mm^{P-P}であり、ランダム波 300gal 時のhmax=210mm P-Pである。これに対して、ソフトシール (図7)を ポンツーン外周に接合して、気密性と滑動性をもたせ た場合の浮屋根モデルの応答が図9、図10である。い ま、最大ビークについて比較すると、正弦波 30gal 時 のソフトシールの液面減衰効果として、浮屋根モデル

写真1-(1) タンク本体

図2 ポンツーン拡大図

写真1-(2) タンク斜視図

· · 640

400.

800

図1 ポンツーン側面図

31

400

160

8

図3 防波プレート側面図

図4 防波プレート補強(スチフナ)

写真2 インターナルフロートモデル

写真3 アルミポンツーン配置図

写真4 防波プレート配置図

の1/100を得る。また、ランダム波 300gal 時でも 1/12減衰する。このことから、ソフトシールは自由 液面、フロートモデルに比較すれば、相当の減衰性を 有していると考えられるが、この実験では、一定加速 度レベル (60gal)を越えると フロートモ デル がロッ キングして、液体が大動揺するから、ソフトシールの 液面減衰効果に限度のあることが判明した。

また,ガイドポールには液面減衰効果は認められな かったが,浮屋根の回転防止に役立つことは実験過程 で明らかになった。

スロッシング防止装置の液面減衰効果に関する実験 結果を図9,図10から検討すると、連結 戶の間隔を

(25)

100%(100dp)としたとき、正弦波 70gal 時で $\frac{1}{25}$ 、 ラン ダム波300gal 時で $\frac{1}{2}$ 滅衰し、100gal ($T_0/T=1$)ま で、容易に、液体のスロッシングを防止することが確 認された。

故に,第3報の実験結果と類似することが,鋼板モ デルタンクでも実証されたが,原型タンクの適用の問 題については考察にゆずる。

実験項目(1)のウのシエルの 破壊試験に 関 しては, 400gal ランダム波+10gal 正弦波に よる 強制振動実 験を行ったが,シエルの損壊は認められなかった。

実験項目(1)のエの試験結果を図11一図14に示した。 静水位を80cm,加振条件として, $T_0/T = 1$,10gal 正 弦波時において,図11はタンク底板傾斜角0,図12は タンク底板傾斜角 $\frac{8}{200}$ としたときのシエルのひずみ量 (%)を示している。(底板から110cmを測点とする。)

この実験結果から、<u>8</u>00 200 変形は見られなかったが、これは振動床台が剛体と考 えられるためで結論に述べる。

図13,図14は自由液面の低加速度域($T_0/T=1$, 10gal)と浮屋根モデルの高加速度域($T_0/T=1$,70 gal)のひずみ量(%)を示している。(測点:底板より 20,40,60,80,100,120cm)図14は浮屋根モデルがロ ッキングして、シエルとルーフ側面のシール部から液 体が噴出するときの、シエルのひずみ量(%)を示して いる。300gal ランダム波加振 と10gal 正弦波加振を

図11 シェルのひずみ試験―1

比較すれば、シエルのひずみ量はランダム波加振の場 合が小さい。

したがって、浮屋根がロッキング運動するとき、ト ップアングル周辺のシエルは大きなひずみを生じると 考えられるが、スロッシング防止装置を設置したと き、同一条件の実験からは、シエルにはほとんど変形 が認められなかった。

実験項目(1)のオのインターナルフローティングルーフモデル(原型1/5尺縮)の対歴実験を,直径100cm ¢ の静水位を420%として実験を行った。実験要領は(1)と同様であるが,写真3に示すように,インターナルルーフのシール部はブナNゴムをワイパーとしてシェルに密着させたものである。また,ルーフは相似構造 モデルと重量相似構造モデルのA型,B型と,ポンツーンを加振方向と平行とするC型と垂直とするD型の 4 種について実験を行った。防波プレート(50%dp) は写真4のように配列し,フロートとプレート間に間 図15-図17に実験結果を示した。図15はモデルルー フの1次,2次,3次共振点の応答を示している。加 振力は α_1 =15gal, α_2 =60gal, α_3 =80gal とした。

図16は防波ブレートをボンツーン間に設置したとき の応答を示し、加振条件は同一である。

図15で、A, B, C, Dタイブの応答をみると、ポン ツーンは振動方向と垂直の位置としたときの方が減衰 が大きく、また、重量相似構造モデルの方が効果的で ある。

図16はポンツーン間に防波プレートを設置したとき の応答であるが、図15と同様な結果を得た。したがっ て、防波プレート設置による液面の減衰効果に関し

図17 ランダム波加振時の液位の応答変位

て,確実に評価することができると同時に,インター ナルフローティングルーフの構造補強策としても有効 であるといえる。

図17にランダム波 (300gal white noise + 10gal sine wave)の対震実験結果を示した。実線はモデルル -フ,破線は防波プレートを設置したモデルル-フの 応答を示している。実験結果から,液面の減衰が大き いのはC型の重量相似構造モデルである。

4. 結 論

- (1) シール方式の相異,あるいは、相似条件を充分考 感しなければならないが、一定加速度レベル(60 gal)を越えて、ソフトシールの減衰効果を評価で きない。
- (2) スロッシング防止装置を設けることによって、 100gal 程度まで浮屋根のロッキングを容易に防止 できる。
- (3) タンク底板 8 /200傾斜による振動実験結果から, シエルの異状な変形はみられなかったが、この種の 実験では、地盤の弾性的性質を考慮したモデルを設 定する必要がある。
- (4) 蒸発損失防止装置(インターナルフローティング ルーフモデルの 300gal 対震実験から、フロートが シエルを損壊する危険性はみられなかった。
- (5) フロートのワイパーシールの減衰効果も、(1)と同様であるが、フロート下部に防波プレートを設置することにより、ロッキングを防止できる。

5. 考 察

新潟地震(地動卓越周期6秒,最大加速度 50gal, 地動変位100cm^{p-p})に見られた石油タンク内液体のス ロッシング現象は、地動の卓越周期(T_G)と貯槽液体 の固有周期(ω_R, ω_G)が一致、あるいは近似すれば必然 的に発生する現象で特異な事例でないことは、第3報 までに述べた。

しかし、貯槽液体のスロッシング現象は、小規模地 酸では発生しにくいようである。例えば、東京で感知 した過去の数年間の地震(49.5、9:伊豆沖地震,50. 2.8:銚子沖地震,50.4.2:八大島地震)を見る と,銚子沖地震は震度Ⅳの中震であるが,管内の石油 施設でスロッシングを誘発した事例は報告されていな いが,前述した新潟地震は関東地方でも遠地地震とし て感知され,出光興産千葉製油所内の大型石油貯蔵タ ンクの浮屋根がロッキングした事例が報告されてい る。したがって,スロッシング現象がただちに構造破 壊,あるいは二次災害につながるものではない。

従来,スロッシングによる 液体 の 溢流防止策とし て,ルーフストッパーの設置とか,浮屋根の破損,接 触スパーク防止方策として,ガイドボールを増設する 方式等が提案されたが,理想的には軟弱地盤を改良す ると同時に地盤の防振対策を考慮すべきである。

筆者らは,研究過程において,スロッシング防止方 策の一手段を提示しているが,今回の鋼板モデルによ る実験結果から,装置の1次共振時のスロッシング防 止効果として,100galを得た。

スロッシング防止装置の原理に関しては、第3報に 述べたが、構造面から、連結手の可変性をどのように するかが問題である。実験過程の経験則から、静水位 の10%を限度として仮定すると、液位10m、20mで、 それぞれ1m、2mとなるが、油圧技術によれば、困 難ではない。また、標準タイプの浮屋根の、ルーフサ ポートパイプ、あるいはデッキプレートサポートパイ プの可動範囲から考えても、ボルトナット締め方式を 利用した方が簡便になる。

防波プレートの板成は、当然、液体の動圧、衝撃 圧、あるいは浮屋根の浮揚条件を考慮しなければなら ないが、最小肉厚とする場合、ポンツーンタイプのス チフナを防波プレート下側で熔接し、補強することも 有効である。また、防波プレートには、排水パイプと 泡消火液送水パイプを通すための貫通孔を設ける必要 がある。

6.終りに

現在までのプラントメーカー側の研究によれば、地 **酸**時のシエルとアニュラープレートの応力解析結果と して、降伏点の3倍で検討を試みているが、スロッシ ング対策として、区画板型のスロッシング防止装置を 理論的、実験的に詳解している。いずれにしても、新 潟地選以後10年間、スロッシングによる施設の損壊事 例がみられないが、平常時の安全対策と同時に、地震 時のスロッシング対策を講じておく必要があると考え られる。

終りに、本研究全般にわたって多くの文献を参考と し、また、ソフトシールに関しては、日本化工機(株) の有益な助言を得た。ここに謝意を表します。 中であるが,放射された液に細かい気泡が混入し乳白 色に変っていること,及びノズル部分で流速約 20m/ sec の速度で噴出されることから気泡による粘度の低 下ではないかと考えられる。

d 50mmホースでの水ゲルの放射

今までホースの摩擦抵抗を考えて,65mm φホースの み使用していたが,今回実験用として50mm φホースに よる放射を実施してみた。ラインプロポーショナー (内径 10mm φ)16型ノズルを使用した。ラインプ ロポーショナーの吸入が不安定で予定より多く吸入し すぎたが,放射が可能であることが分った。特に射程 は23型と同様な飛距離が得られたことで,水量でなく 粘度による相間関係があった。

e 水ゲル泡について

この実験は粘度を有する液体でも、泡剤を混入する ことによって容易に泡放射ができるか否かを調査する ためのものであったが、粘度約50CPで発泡率が、 4.5倍の泡が同射程で放射でき、6時間後の消泡性は 泡剤のみに比較し約1/2の消泡率で泡が消えにくい こと等、増粘性の特徴が明らかになった。

表3-3 水平落下距離の比較

水平落	ノズ 3 kg	ル圧 /cm²	ノズ 5 kg	ル圧 /cm²	粘度(CP)
実験別	距離) (m)	のび率	距離) (m)	のび率	14°C
実験1	32	1.00	38	1.00	約1.5
実験2	34	1.06	42	1. 11	約3,600
実験3	36	1.13	49	1. 27	約4,900
実験4	32	1.00	-	_	約700

表3-4 圧力損失一覧表

田力損失 (kg/cm ²) 実験別	ノズ 3 kg ライン ブロ	ル圧 /cm ² ホース	ノズ 5 kg ライン プロ	ル圧 /cm² ホース	備	考
実験1	4.0	0. 5	6. 5	0. 5	65mm¢ 延長 2本	ホース 、 水
実 験 2	3. 5	1.0	6. 5	1.0	"	水ゲル
 実験 3	2. 7	1.8	5.5	3. 5	65㎜¢ 延長 4本	ホース 水ゲル
実験 4	2. 7	2. 3		_	65㎜¢ 延長 6本	ホース 水ゲル

表 3 - 5 500 型ライン プロポーショナーの吸入 試験結果(水の場合)

送水圧 (kg/cm²)	流 量 (ℓ/分)	ノズル圧 (kg/cm²)	圧損 (kg/cm²)	吸入	率(%)
6.0	500	1.5	4.5		3. 1
6.5	520	3. 0	3. 5		2. 9
6. 0	500	3. 5	2. 5	少	量
6.0	500	4.0	2.0	逆流し	吸入せず
/FL1	CEmm +	71大杯	ミレイ生体	57 +-	

但し 65mmホース1本処長して実施した。

表3-6 粘度実測値とPH値,吸入率による粘度差

	実測粘度 (CP)	PH値によ る粘度 (CP)	吸入率によ る粘度 (CP)
実験 2	3, 600	15, 300	15, 800
実験 3	4, 900	13, 500	7, 300
実験 4	700	8,000	100
実験 5	3, 200	15, 400	15, 500
B型粘度	計 6. 0rpm に~	て測定	

_____ • • • • • •

5. おわりに

今回の実験から、水ゲルの持つ再燃防止効果、水が 増粘されることによる注水対象物に対する集中性,界 面活性剤泡剤に水ゲルを添加することによって泡剤の 欠点である消泡性の解消など一般火災における水ゲル の有効性が確認された。反面、ホースを延長するにつ れてポンプ圧力も増加しければならないほどの問題点 もあり、今後水ゲル放射に有効なラインプロポーショ ナーの開発も併せて進めてゆく必要があることが痛感 された。

今後,適当な実験可能な建物があれば,実大規模の 火災実験により,水ゲルの持つ水損防止効果並びに消 火効果について検討を加えていきたい。