.6

石油貯蔵タンク配管系の耐震実験について (第1報)

後	巌		繁*
斉	藤		洋*
-44-	-	-	

菅原満弘*

1. はじめに

昭和39年6月16日午後1時頃、マグニチュード7.7、 震源距離100km、新潟県沖に発生した大地震は、陸上 に多大な損害を与えたが、特に危険物関係施設につい ては、タンクの沈下・傾斜・破壊等による油の流出、 火災など、大きな被害を受けた。

タンクと接続配管については、タンクに沈下,変形 等の被害を受けたにもかかわらず,配管自体の可挠性 によって折損はなかったが,ネジ込み継手のところで 破損し、油の漏洩が起っていたと報告されている。

新潟地麓の教訓から,タンクと配管接続部付近に緩 衝装置を設けることが,昭和40年の政令改正時に規定 された。

今回は,配管系,特に少量危険物貯蔵取扱所(東京 消防庁管内約58,700件)を対象とした,規模の小さな ものについて振動実験を行い,次回実験する可撓式配 管の耐震強度に関する研究の基礎的データとするもの である。以下実験結果について報告する。

2. 実験項目

- (1) 静的実験
 - ア. 直状管, ループ型配管の荷重と変位
 - イ. 直状管の荷重とひずみ
- (2) 動的実験
 - ア.ルーブ型配管の共振周波数
 - イ. ループ型配管の共振時のひずみ
 - ウ. ルーブ型配管の加速度と変位

3. 実験月日及び場所

昭和52年11月20日~昭和53年2月20日 東京都渋谷区幡ヶ谷1~13~20号

◆第二研究室

東京消防庁消防科学研究所 振動実験室

4. 実験供試体

- JIS規格, 配管用炭素鋼管 (SGP)
- (1) 直状管 (口径20mm, 32mm, 全長5,500mm)
- (2) ループ型配管 大 (口径32mm, 全長3,500mm)
- (3) ループ型配管 中(口径32m,40m,全長2,500m)
- (4) ループ型配管 小 (口径32mm, 全長1,500mm)

5. 実験装置

- (1) 振動試験機
- (2) ひずみ測定器
- ア. 静みずみ計
- イ. 動ひずみ計
- (3) 加速度変換器
- (4) ひずみゲージ
- (5) 電磁オシログラフ
- (6) チェーンブロック
- (7) バネばかり
- (8) 加圧ボンブ
- (9) ハイトゲージ

6. 実験方法

- (1) 静的実験
 - ア.直状管の静荷重による曲げ実験 直状管を床上に固定し、チェーンブロックによ り静荷重をかけ、床面からの変位及びひずみを測 定した。

測定点は,支点より2 cm, 10 cm, 30 cm, 40 cmの 位置である。(写真 1)

イ.ルーブ型配管の静荷重による引張実験 口径32mmのループ型配管(大型)の1端を固定 し、他端に引張りによる静荷重をかけ、変位を測 定した。(写真 2)

写真1 直状管の曲げ実験

写真2 ルーブ型配管の引張実験

(2) 動的実験

ループ型配管の振動実験

口径32mmルーブ型配管,大・中・小型3種につい て,共振問波数とひずみの測定は,配管内に水圧2 kg/cm²をかけた状態と空の状態において,正弦波 加振(70gal一定)を行なった。

変位については、70galの共振時と共振時以外に おいて、加速度を700galまで上げたときについて 測定した。(写真 3)

写真3 ループ型配管の振動実験

7. 実験結果

(1) 直状管の曲げ実験

図1-1,図1-2及び麦1に結果を示す。 40kgまで荷重をかけて曲げたが,配管には異状は認

められず,荷重を除くと元にもどった。したがって, この範囲においては,弾性限界内であるといえる。

40kg以上の荷重をかけることは、支持点の固定力の 限界から測定できなかった。

図1-1 静荷重による曲げ実験(直状管)

図1-2 静荷重による曲げ実験(直状管)

測定点 荷重	ст 2	с т 10	ст 20	cm 30	cm 4 0
IOKa	240	210	230	230	230
20Kg	660	590	650	640	620
30Kg	1,100	970	1,080	1,080	1,040
40Kg	1,520	1,370	1,500	1,500	1,470

表1 ひずみ側定値 (×10⁻⁶ ひずみ)

(2) ループ型配管の引張実験

図2により結果を示す。荷重80kgあたりから配管の 直状部分が弓状に変形し、荷重120kgで配管は破壊し た。破壞箇所は、図3-1における測定点18部分の配 管ネジ切り部であった。

- (3) ループ型配管の振動実験
 - 7.図3-1,図3-2にひずみ測定点及び加振方向 を示す。

大型及び中型配管については、X方向における 共振周波数の測定ができたが、小型については、 X方向において周波数を上げていったが配管に振 動が認められず、Y方向により、測定を行なっ た。

図3-1 ひずみ測定点(大,中型)

図3-2 ひずみ測定点(小型)

イ.大・中・小型配管の 共振周波数は、図4 による。

ここでa₀は振動台の加速度, a は配管の加速度 を示す。

 (7) 大型配管……空の場合 2.5Hz,水圧 2 kg/ cm²の場合 2.3Hz

- (イ) 中型配管……空の場合 4.5Hz, 水圧 2 kg/ cm²の場合 4.2Hz
- (ウ) 小型配管……空の場合 3.4Hz, 水圧 2 kg/ cm²の場合 3.3Hz

以上各周波数において共振した。

図4 周波数と応答

図4からわかるように,各配管とも,水圧2kg/cm² をかけた場合が共振周波数が低く,応答倍率のピーク は高くなっている。

このことは、同じ配管系においては、管内に内容物 が充たされている場合が、より低周期にて共振し、応 答倍率が大きくなり、固定部に強い力が加わる。した がって空の場合より破壊の被害を受けやすくなる傾向 を示すことが予想される。

ウ. 配管各部のひずみ測定値、ひずみ分布をそれぞれ 表2及び図5(5-1~5-6)に示した。

これらの結果から,各配管とも全体的にほぼ同様な 傾向を示していることがわかる。

空の場合と水圧をかけた場合の値を比較してみると、大型及び小型については、両方とも水圧をかけた 方が大きくなっている。

中型については、部分的に逆転している。

これらの分布図によって、振動時における配管各部 の力の配分がわかる。

ひずみ値が最大となる箇所は、X方向(大・中型) では測定点18の部分である。

Y方向(小型)については、測定点2の部分である。したがって、これらの箇所が最も力がかかる部分であると言える。

エ.図6は、ひずみ測定値から作成した、ループ型配 管の振動形態を示す概念図である。(X方向の振動 に関する。)

太線部分は, 平常状態であり, 細線で伸びと縮み の状態を示している。

オ. 図7では、口径32mm及び40mm中型配管の加速度と 変位の関係について示した。

正弦波 70gal 一定で,共振時における変位と共振 時以外において加速度を変化させていった時の変位 について比較した。

図7から,両配管とも70gal 共振時の変位が最大 となり,共振時以外の場合は,10倍の700galまで加 速度を上げて加振したが,共振時の変位までは到ら ず,一定化していく傾向を示している。

このことから,地震動に配管の動きが共振したと きが,最も激しく揺れることが確認できた。

		1	2	3	4	5	6	7	8	9	10	11	12
★	T	320	327	321	260	245	147	126	112	41	349	356	453
M	2 55	479	480	460	397	330	182	196	167	43	431	593	643
ф	22	281	276	241	222	202	113	114	74	81	137	228	254
<u>6</u> 2	2 12	274	275	253	239	232	144	89	66	73	109	191	195
办	Ŧ	483	518	481	407	236	277	334	328	349	403	365	346
Ø	2 12	576	598	546	487	419	307	398	384	402	465	410	398
	₩ · <u>A</u> ·	13	14	15	16	17	18	19	20	21	22	23	24
*	92	380	438	469	508	486	558	393	408	358	151	87	34
Q2	2 12	582	687	669	649	705	777	562	372	605	206	124	49
æ	≌2	302	326	317	349	358	295	380	286	216	148	87	30
Ø	2 95	284	277	306	320	814	264	409	332	285	184	106	39
小	坙	302	280	210	231	208	179	164	156	\geq	\angle	\angle	\geq
<u>0</u>	2 142	326	267	261	250	217	195	17.0	174				\square

表2 ひずみ測定側 (×10⁻⁶ ひずみ)
図5 ひずみ分布

5-2 大型 2 kg/cm² (X)

5-3 中型 空(X)

5-4 中型 2 kg/cm²(X)

8.考 察

正弦波は地震波に比べると,約1.5~2倍の地震波 に相当すると言われており,正弦波による実験は安全 側と考えられる。

1964年3月27日,大規模なアラスカ地震が発生し, 各地に多大なる被害をもたらしたが,地震後の建築物 に付属している設備の被害状況について報告⁽⁷⁾されて いる。

今回,われわれが行なった実験結果とアラスカ地震 における,配管設備の被害状況とを比較してみると, 合致する点が多くみられるので合わせて検討してみる と次のとおりである。

·(1) 静的実験

直状管に荷重40kgを加えたが弾性範囲内であり,配 管にはなんら異状は見られなかった。

写真4-1,写真4-2では、ロ径32mmループ型配 管(中型)の引張実験において、荷重100kgで変位は 120mm、荷重115kgでは変位154mmとなった、さらに荷 重120kgを加えたところ、図3-1測定点18のネジ切

写真4-1 ループ型配管の破損状況

写真4-2 破損部分

り継手部において破壊した。

アラスカ地震において,配管系が被害を受けた箇所 は,構造体が完全にやられたところを除けば,大部分 継手部分で起こっている,配管そのものが破壊された ものはほとんどないと報告されている。

(2) 動的実験

ロ径32mmループ型配管の共振周波数を測定した結果,地震時の振動数範囲内(一般に 10Hz 以下と言われている⁽¹⁰⁾)であるという値が出た。

また、大・中型配管ではX方向加振(図3-1)で 測定できたが、小型配管については周波数を1から10 Hzまで上げていったが振動せず、15Hzあたりから敵 動しはじめた、この点については、配管系が短かく堅 固なため振幅がゆるい(少ない)低周波数では応答し ないと言える。

写真5では、口径20mmループ型配管(中型)を70gal の共振時(2.5Hz)において正弦波加振したところ、配 管の振れが急に小さくなったので点検したところ、図 3-1測定点18の継手ネジ切り部で亀裂していた。

共振時のひずみ測定の結果、大・中型配管(X方向 加振)が測定点17,18の値が大きく力が最も加わる点

写真5-1 ループ型配管の振動実験による破損

写真5-2 破損部分

と思われる。このことについて,前記実験により測定 点18部分にて配管が破壊したことにより証明されたと いえる。

小型配管については(Y方向加振),固定台と配管 接続部のひずみが最大となった。

加速度と変位の実験では、口径 32mm ルー プ型配管 (中型)の 70gal における共振時 (4.5Hz)の変位は 87.7mmであるのに対して共振外 (5.0Hz) にて 700gal での変位は60.0mmであった。

また, 口径40mmループ型配管は, 共振時 (5.3Hz) において69.5mm, 共振外 (6.0Hz) では 36.8mmの変位 であった。

このことから,配管系が大きな力を受けるのは,加 速度の大きさよりも,地震動に共振した時であると言 える。

アラスカ地震における被害状況は、地震時に配管に かかる曲げの繰り返しによって、ネジ込み継手のネジ 山が完全にこわされた。

配管が建物の固有振動数と共振して異常に大きく動 き,配管と機器の接続部・ネジ込み継手部及び鉄と非 鉄管の間の電食防止用のもろい非金属部において破壊 されている。

また,逆に被害の 少なかったのは 次の 箇所で あった。

- 配管自体(接続等のない直状部)
- 配管接続に溶接を行なったところ
- 地震のために,建築構造の伸縮継手部分に十分な ループ状配管がされていたところ
- 配管のつり手または支柱に水平ブレーシングが取り付けてあったところ
- スプリンクラ設備においては、NBFU規格により施行されたもの
 - ここにNBFU (National Board of Fire

Underwriters) 規格⁽⁷⁾の考えを示す。

水平配管を床等に堅固に取り付け,配管のみの振動 を防ぎ,構造体とともに振動させる。立て配管がスラ ブを貫通するときには,スラブの上下にたわみ継手を 入れて,上下床の異なった動きに自由に対応できるよ うにする。壁や床を貫通する配管は,貫通部にすきま をとるか,たわみ継手を入れる。水平ブレーシングを とる。等が規定されている。

以上実験の結果とアラスカ地震の被害状況を通じて 次のことが言える。

網管自体は,強度と弾力性が強いため安全であると 考えられるが,配管接統部が弱く,特にネジ切りによ る接続は破壊する恐れがある。(配管接続は溶接によ る方法が良いであろう。)

建築物の固有振動数と共振すると、振動は不安定と なり増幅するため、配管系の固有振動数を大きくはず してやる必要があると思われる。(配管系の異常増幅 作用を押えるストッパ等を設ければ良いであろう。)

建築物相互間に渡る配管系及び壁や床を貫通する部 分の配管については,相当大きな力が加わると考えら れるので,可撓式配管の取り付けまたは自在性を持た せた配管方法が必要であると思われる。

9. おわりに

配管系の振動解析は,モーダルアナリシス法⁽⁰⁾等を 用いた応答計算により原子力プラントなどの耐震設計 がすでに実用化されている。

今回の振動実験においては,立体的かつ現実的な方 法ではなく,平面的な配管を設定し,配管の固定につ いては無視した,苛酷な条件のもとに加震実験を行な った。

はじめに述べた通り,昭和53年度実施する可撓式配 管の耐酸強度に関する研究についての基礎的なデータ ーを得ることができた。

なお、本実験に際し御指導、御協力をいただいた高 輪消防署川田 孝、第三研究室伏見 英両氏に謝意を 表します。

10. 参考文献

- (1) 中村: 地震学
- (2) 武藤: 耐震計算法
- (3) 山崎 裕:地震の基礎知識(1977.7)
- (4) S.シュワイゲラー:配管工学ハンドブックI.I
- (5) 丸善㈱:配管 Na.3
- (6) 藤川猛・黒橋道也・井上喜雄:モーダルアナリシ スによる配管系の振動解析
- (7) 向野元昭,訳:1964年アラスカ地震による建築設備の被害報告

- (8) 柴田 碧:産業施設の耐震設計基準の現状とあり 方(1976)
- (9) 東京消防庁:大震火災時における危険物施設等の

延焼性状に関する調査研究報告書(1974)

(0) 東京消防庁から火災学会へ研究委託:消防設備等の耐震措置に関する調査研究報告(1976)