現用三連はしごの応力測定結果について

The stress distribution caused to the ladder for fire fighting use.

辻		英	機*
城	Ħ		闘!♥
松	\boxplus	啓	行**
太	Ħ	文	和*
北	村	昭	夫*

We created stress simulation program of three extention ladder based on finite element method. On the other hand, we measured the stress distribution caused on it by experiment.

As a result of comparing both effect, we found that the stress simulation expressed exactly the result of actual measurement. In future, it can be applied to make a light-weight ladder for fire fighting use.

1. はじめに

三連はしごの使用時に発生する応力については, 従来多くの実験が行われてきたものであるが,第 三研究室では別途,理論計算によって応力分布を 求めることを意図し,有限要素法という数値解析 法を用いた消防用はしごの応力シミュレーション 技術を開発した。

このシミュレーション技術を三連はしごに適用 したところ、従来の実測による応力分布とは異な ったものとなった。その相違を検討した結果、実 測における応力の測定位置及び測定点の数に問題 があるとの結論に達し、従来の実測方法を改め、 ひずみゲージを主かん上に稠密に貼付し実験を行 った。

この結果,実測による応力分布はシミュレーシ ョン解析の結果とほぼ一致し,この応力分布の妥 当性が確認された。今回開発したはしごの応力コ ンピューターシミュレーション技術の概要及び三 連はしごの改良方法に関しコンピュータシミュレ ーション技術の応用例等について報告する。

2. シミュレーションについて

(1) 応力計算法

コンピュータによる構造体の応力計算法は, 有限要素法に基づくラーメン解析を使用してい

*第三研究室 **狛江消防署

る。有限要素法は航空機構造解析の精密化に端 を発し、欧米の技術者によって開発された数値 解析法であったが、コンピューターの進歩と数 学的基礎研究の発展により理工学のあらゆる分 野に応用しうる数値解析法として脚光をあびて いる。

現在,有限要素法は航空機,船舶,自動車等 の構造解析及び流体,電磁場等連続体の物理量 の計算に使用されている。

(2) 三連はしごの応力シミュレーション 今回試みた応力解析は、三連はしごの各連の 段出し数、荷重条件及び架てい角度等の入力に より、主かん上面及び下面の応力分布状況、た わみ量がグラフに表わされるものである。

計算手法としては,はしごの構造が左右対称 形であることとコンピューターの容量の関係か う二次元ラーメン解析とした。

各連の接合条件は,接触条件に近づけるため 接触による圧縮部分に剛性率の小さい仮想部材 を挿入することにより近似させた。

実測時の応力分布とシミュレー ションとの比較

(1) 供試はしごと応力測定点

実測及びシミュレーションの対象としたはし ごは、積載三連はしご(鋼管製,全伸てい長さ 8.7m,重量43kg)とし、実測においては主かん 上側にひずみゲージを233点貼付し応力分布を 求めた。(貼付箇所は図1のとおり)

図1 三連はしごのひずみ測定点

写真1 荷重状況

(2) 実験条件

- ア 水平全伸てい 水平全伸ていの状態で、各横かんに80kgの 荷重を加える。
- イ 70度架てい

70度架ていの状態で,各横かんに100kgの荷 重を加える。なお,三連目の先端から4番目 の横かんの位置を上部架てい位置とした。(写 真1)

(3) 計測方法

各点のひずみは,スキャナーを介してひずみ 測定器で測定した。また,ひずみ測定器とコン ピューターを接続し,コンピューターによりデ ーターの蓄積及び応力分布の作図を行った。

(図2,写真2)

実験に使用した計測器等は,次のとおりであ る。

ひずみゲージ……共和KFC-5-C1-11-L500-3

ひずみ測定器……共和 UCAM-8BL

スキャナー……共和 USB-50A

XYプロッター……渡辺測器 WX4636R

コンピューター……NEC 8801MK2 SR

(4) 応力分布の実測結果とシミュレーション結果ア 水平全伸ていの場合

実施した応力分布の代表例と同一条件で行

ったシミュレーションの結果を合わせて,図 3~図7に示す。

イ 70度架ていの場合 実測した応力分布の代表例と同一条件で行ったシミュレーションの結果を合わせて、図 8~図11に示す。

写真2 計測機器

図3 応力分布(水平全伸てい荷重80kg)

図2 ひずみ計測方法

図4 応力分布(水平全伸てい荷重80kg)

図6 応力分布(水平全伸てい荷重80kg)

図9 応力分布(70度架てい荷重100kg)

図10 応力分布(70度架てい荷重100kg)

図11 応力分布(70度架てい荷重100kg)

4. 考察

(1) 実測とシミュレーションの結果について 今回行ったシミュレーション結果は、実際の 応力分布とほぼ一致していることが確認された。 今後はシミュレーションによる予測が可能と なり、研究の効率化に活用できることと思われ る。

(2) 応力分布の特徴について

応力分布の第一の特徴は、分布が鋸刃波形を 示していることである。これは、主かんと支持 かん(表裏の主かんを接続するかん)の溶接部 の両側に、同じ向きの回転モーメントが発生し、 溶接部の左右表面で引張と圧縮に逆転するため である。

第二の特徴は、水平でも70度架ていでも、二 連目に著しく大きな応力が発生していることで ある。そして、その箇所は一連目と二連目及び 二連目と三連目が重なり合った部分である。

他の実験で,一連目と二連目の接合部から折 損する例があったが,これは,この応力分布の 妥当性を裏付けているものといえる。

5. シミュレーションの応用

シミュレーション技術の応用により次のことが 可能になる。

(1) 軽量化等の検討

はしごの軽量化等を検討する場合材質,構造 等の改良に伴って応力分布がどのように変わる かを調べる必要がある。そのため従来は,試作 して実測を行っていたが,コンピューターシミ ュレーションを行うことにより設計,改良等が 容易になる。一例として,現用三連はしごの二 連目の最下端(側面)に図12のような補強かん を取付けた場合をシミュレートすると,二連目 に発生していた大きな応力が消え,はしご全体 にわたってほぼ均一な応力分布を示すことにな る。(図13)つまり,強度的な改良方法が明らか になり,使用糸件によっては,軽量化の可能性 あるいは適正な設計であるかなども判断できる ことになる。

図14 応力分布 (70度架てい荷重100kg)

(2) 最適使用の解明

建物二階に三連はしごを架ていする場合,二 連目と三連目の伸てい長さの組合せは種々ある わけであるが,どのような組合せがはしごにと って負担が軽いかを調べることもできる。

図14は、二連目を3段、三連目を8段伸てい した場合及び二連目を8段、三連目を3段伸て いした場合の応力分布である。この結果、前者 の方が発生応力が少なく、はしごにとって荷重 負担が軽いということがわかる。(図14)

6. おわりに

消防用はしごは複雑な構造となっているため、 従来から設計,強度計算などに高度の知識と労力 を要していたがコンピューター技術の発展に伴い はしご等の研究開発面への応用が可能になり,ま た,応力解折等も容易に出来るようになった。

今後,コンピューターシミュレーション技術を 消防の技術開発に積極的に導入し,消防活動の安 全化,機器の軽量化等に役立てたい。